|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
from groq import Groq |
|
import time |
|
from PIL import Image as PILImage |
|
import io |
|
import os |
|
import base64 |
|
import random |
|
|
|
def create_monitor_interface(): |
|
api_key = os.getenv("GROQ_API_KEY") |
|
|
|
class SafetyMonitor: |
|
def __init__(self): |
|
self.client = Groq() |
|
self.model_name = "llama-3.2-90b-vision-preview" |
|
self.max_image_size = (800, 800) |
|
self.colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)] |
|
|
|
def resize_image(self, image): |
|
height, width = image.shape[:2] |
|
aspect = width / height |
|
|
|
if width > height: |
|
new_width = min(self.max_image_size[0], width) |
|
new_height = int(new_width / aspect) |
|
else: |
|
new_height = min(self.max_image_size[1], height) |
|
new_width = int(new_height * aspect) |
|
|
|
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) |
|
|
|
def analyze_frame(self, frame: np.ndarray) -> str: |
|
if frame is None: |
|
return "No frame received" |
|
|
|
|
|
if len(frame.shape) == 2: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) |
|
elif len(frame.shape) == 3 and frame.shape[2] == 4: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) |
|
|
|
frame = self.resize_image(frame) |
|
frame_pil = PILImage.fromarray(frame) |
|
|
|
|
|
buffered = io.BytesIO() |
|
frame_pil.save(buffered, |
|
format="JPEG", |
|
quality=50, |
|
optimize=True) |
|
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
image_url = f"data:image/jpeg;base64,{img_base64}" |
|
|
|
try: |
|
completion = self.client.chat.completions.create( |
|
model=self.model_name, |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": """Analyze this workplace image and describe each safety concern in this format: |
|
- <location>Description</location> |
|
Use one line per issue, starting with a dash and location in tags.""" |
|
}, |
|
{ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": image_url |
|
} |
|
} |
|
] |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": "" |
|
} |
|
], |
|
temperature=0.1, |
|
max_tokens=500, |
|
top_p=1, |
|
stream=False, |
|
stop=None |
|
) |
|
return completion.choices[0].message.content |
|
except Exception as e: |
|
print(f"Detailed error: {str(e)}") |
|
return f"Analysis Error: {str(e)}" |
|
|
|
def draw_observations(self, image, observations): |
|
height, width = image.shape[:2] |
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
font_scale = 0.5 |
|
thickness = 2 |
|
|
|
|
|
for idx, obs in enumerate(observations): |
|
color = self.colors[idx % len(self.colors)] |
|
|
|
|
|
box_width = width // 3 |
|
box_height = height // 3 |
|
x = random.randint(0, width - box_width) |
|
y = random.randint(0, height - box_height) |
|
|
|
|
|
cv2.rectangle(image, (x, y), (x + box_width, y + box_height), color, 2) |
|
|
|
|
|
label = obs[:40] + "..." if len(obs) > 40 else obs |
|
label_size = cv2.getTextSize(label, font, font_scale, thickness)[0] |
|
cv2.rectangle(image, (x, y - 20), (x + label_size[0], y), color, -1) |
|
cv2.putText(image, label, (x, y - 5), font, font_scale, (255, 255, 255), thickness) |
|
|
|
return image |
|
|
|
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]: |
|
if frame is None: |
|
return None, "No image provided" |
|
|
|
analysis = self.analyze_frame(frame) |
|
display_frame = self.resize_image(frame.copy()) |
|
|
|
|
|
observations = [] |
|
for line in analysis.split('\n'): |
|
line = line.strip() |
|
if line.startswith('-'): |
|
|
|
if '<location>' in line and '</location>' in line: |
|
start = line.find('<location>') + len('<location>') |
|
end = line.find('</location>') |
|
observation = line[end + len('</location>'):].strip() |
|
else: |
|
observation = line[1:].strip() |
|
if observation: |
|
observations.append(observation) |
|
|
|
|
|
annotated_frame = self.draw_observations(display_frame, observations) |
|
|
|
return annotated_frame, analysis |
|
|
|
|
|
monitor = SafetyMonitor() |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision") |
|
|
|
with gr.Row(): |
|
input_image = gr.Image(label="Upload Image") |
|
output_image = gr.Image(label="Annotated Results") |
|
|
|
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5) |
|
|
|
def analyze_image(image): |
|
if image is None: |
|
return None, "No image provided" |
|
try: |
|
processed_frame, analysis = monitor.process_frame(image) |
|
return processed_frame, analysis |
|
except Exception as e: |
|
print(f"Processing error: {str(e)}") |
|
return None, f"Error processing image: {str(e)}" |
|
|
|
input_image.change( |
|
fn=analyze_image, |
|
inputs=input_image, |
|
outputs=[output_image, analysis_text] |
|
) |
|
|
|
return demo |
|
|
|
demo = create_monitor_interface() |
|
demo.launch() |