AhmedSSabir's picture
Update app.py
b8bfd60
raw
history blame
7.71 kB
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import argparse
#import torch
import re
import os
import gradio as gr
import requests
from sentence_transformers import SentenceTransformer, util
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from transformers import T5Tokenizer, AutoModelForCausalLM
import torch
from transformers import BertJapaneseTokenizer, BertModel
import torch
class SentenceBertJapanese:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
self.model = BertModel.from_pretrained(model_name_or_path)
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
# return torch.stack(all_embeddings).numpy()
return torch.stack(all_embeddings)
#model_sbert = SentenceTransformer('stsb-distilbert-base')
model_sbert = SentenceTransformer("colorfulscoop/sbert-base-ja")
#MODEL_NAME = "sonoisa/sentence-bert-base-ja-mean-tokens-v2"
#model_sbert = SentenceBertJapanese(MODEL_NAME)
#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)
#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
import re
def Sort_Tuple(tup):
# (Sorts in descending order)
tup.sort(key = lambda x: x[1])
return tup[::-1]
def softmax(x):
exps = np.exp(x)
return np.divide(exps, np.sum(exps))
# Load pre-trained model
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
#model = GPT2LMHeadModel.from_pretrained('colorfulscoop/gpt2-small-ja',output_hidden_states= True, output_attentions=True)
tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt-1b")
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-1b")
#model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
#model.eval()
#tokenizer = gr.Interface.load('huggingface/distilgpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
#tokenizer = T5Tokenizer.from_pretrained('colorfulscoop/gpt2-small-ja')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
def cloze_prob(text):
whole_text_encoding = tokenizer.encode(text)
# Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
text_list = text.split()
stem = ' '.join(text_list[:-1])
stem_encoding = tokenizer.encode(stem)
# cw_encoding is just the difference between whole_text_encoding and stem_encoding
# note: this might not correspond exactly to the word itself
cw_encoding = whole_text_encoding[len(stem_encoding):]
# Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
# Put the whole text encoding into a tensor, and get the model's comprehensive output
tokens_tensor = torch.tensor([whole_text_encoding])
with torch.no_grad():
outputs = model(tokens_tensor)
predictions = outputs[0]
logprobs = []
# start at the stem and get downstream probabilities incrementally from the model(see above)
start = -1-len(cw_encoding)
for j in range(start,-1,1):
raw_output = []
for i in predictions[-1][j]:
raw_output.append(i.item())
logprobs.append(np.log(softmax(raw_output)))
# if the critical word is three tokens long, the raw_probabilities should look something like this:
# [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
# Then for the i'th token we want to find its associated probability
# this is just: raw_probabilities[i][token_index]
conditional_probs = []
for cw,prob in zip(cw_encoding,logprobs):
conditional_probs.append(prob[cw])
# now that you have all the relevant probabilities, return their product.
# This is the probability of the critical word given the context before it.
return np.exp(np.sum(conditional_probs))
def cos_sim(a, b):
return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))
def get_sim(x):
x = str(x)[1:-1]
x = str(x)[1:-1]
return x
#def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
def Visual_re_ranker(sentence_man, sentence_woman, context_label, context_prob):
sentence_man = sentence_man
sentence_woman = sentence_woman
context_label= context_label
context_prob = context_prob
sentence_emb_man = model_sbert.encode(sentence_man, convert_to_tensor=True)
sentence_emb_woman = model_sbert.encode(sentence_woman, convert_to_tensor=True)
context_label_emb = model_sbert.encode(context_label, convert_to_tensor=True)
sim_m = cosine_scores = util.pytorch_cos_sim(sentence_emb_man, context_label_emb)
sim_m = sim_m.cpu().numpy()
sim_m = get_sim(sim_m)
sim_w = cosine_scores = util.pytorch_cos_sim(sentence_emb_woman, context_label_emb)
sim_w = sim_w.cpu().numpy()
sim_w = get_sim(sim_w)
LM_man = cloze_prob(sentence_man)
LM_woman = cloze_prob(sentence_woman)
score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))
return {"彼 (man)": float(score_man * 100000000), "彼女 (woman)": float(score_woman)* 1000000000}
#print(Visual_re_ranker("ハイデルベルク大学は彼の出身大学である。", "大学", "0.7458009"))
demo = gr.Interface(
fn=Visual_re_ranker,
description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender",
inputs=[gr.Textbox(value="ハイデルベルク大学は彼の出身大学である。") , gr.Textbox(value="ハイデルベルク大学は彼女の出身大学である。"), gr.Textbox(value="大学"), gr.Textbox(value="0.7458009")],
# inputs=[gr.Textbox(value="これこれ!!なっちょのインスタ開設はこれがあるから尚幸せなのよ!") , gr.Textbox(value="インスタ開設"), gr.Textbox(value="大学"), gr.Textbox(value="0.5239")],
#inputs=[gr.Textbox(value="a man is blow drying his hair in the bathroom") , gr.Textbox(value="a woman is blow drying her hair in the bathroom"), gr.Textbox(value="hair spray"), gr.Textbox(value="0.7385")],
#outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")],
outputs="label",
)
demo.launch()