AhmedSSabir's picture
Update app.py
a600014
raw
history blame
4.82 kB
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import argparse
#import torch
import re
import os
import gradio as gr
import requests
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
#resp = requests.get(url)
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
#from lm_scorer.models.auto import AutoLMScorer as LMScorer
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
#device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_1 = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base')
#SentenceTransformer('stsb-distilbert-base', device=device)
#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)
#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import NumPy as np
import re
def Sort_Tuple(tup):
# (Sorts in descending order)
tup.sort(key = lambda x: x[1])
return tup[::-1]
def softmax(x):
exps = np.exp(x)
return np.divide(exps, np.sum(exps))
# Load pre-trained model
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
model.eval()
tokenizer = gr.Interface.load('huggingface/distilgpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
def cloze_prob(text):
whole_text_encoding = tokenizer.encode(text)
# Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
text_list = text.split()
stem = ' '.join(text_list[:-1])
stem_encoding = tokenizer.encode(stem)
# cw_encoding is just the difference between whole_text_encoding and stem_encoding
# note: this might not correspond exactly to the word itself
cw_encoding = whole_text_encoding[len(stem_encoding):]
# Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
# Put the whole text encoding into a tensor, and get the model's comprehensive output
tokens_tensor = torch.tensor([whole_text_encoding])
with torch.no_grad():
outputs = model(tokens_tensor)
predictions = outputs[0]
logprobs = []
# start at the stem and get downstream probabilities incrementally from the model(see above)
start = -1-len(cw_encoding)
for j in range(start,-1,1):
raw_output = []
for i in predictions[-1][j]:
raw_output.append(i.item())
logprobs.append(np.log(softmax(raw_output)))
# if the critical word is three tokens long, the raw_probabilities should look something like this:
# [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
# Then for the i'th token we want to find its associated probability
# this is just: raw_probabilities[i][token_index]
conditional_probs = []
for cw,prob in zip(cw_encoding,logprobs):
conditional_probs.append(prob[cw])
# now that you have all the relevant probabilities, return their product.
# This is the probability of the critical word given the context before it.
return np.exp(np.sum(conditional_probs))
def cos_sim(a, b):
return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))
def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
caption = caption
visual_context_label= visual_context_label
visual_context_prob = visual_context_prob
caption_emb = model.encode(caption, convert_to_tensor=True)
visual_context_label_emb = model_1.encode(visual_context_label, convert_to_tensor=True)
sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb)
sim = sim.cpu().numpy()
sim = str(sim)[1:-1]
sim = str(sim)[1:-1]
LM = cloze_prob(caption)
#LM = scorer.sentence_score(caption, reduce="mean")
score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob)))
#return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
return {"init hypothesis": float(LM)/1, "Visual Belief Revision": float(score)/1 }
#return LM, sim, score
demo = gr.Interface(
fn=Visual_re_ranker,
description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information",
inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")],
#outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")],
outputs="label",
)
demo.launch()