Spaces:
Build error
Build error
File size: 7,745 Bytes
6877edc da0e3ab 73fd4c0 6877edc 73fd4c0 af6eab9 fbd6bad af6eab9 73fd4c0 af6eab9 73fd4c0 af6eab9 ae3f094 af6eab9 d20794a fc61926 af6eab9 fc61926 73fd4c0 aa9bb98 7ac5c7d af6eab9 fbd6bad 7ac5c7d fbd6bad af6eab9 b6ee570 6877edc b6ee570 6877edc b6ee570 6877edc b6ee570 6877edc 7ac5c7d af6eab9 7ac5c7d d0817ad 2275971 79ce0ab 6877edc 80b43a8 af6eab9 6877edc 7ac5c7d 6877edc 233c677 6877edc af6eab9 6877edc b6ee570 7ac5c7d 79ce0ab 6877edc af6eab9 6877edc af6eab9 04fc8d0 2ea769d af6eab9 2ea769d af6eab9 2ea769d 6877edc 233c677 07fdf2c 6877edc af6eab9 6f11b02 349cabe af6eab9 6877edc 349cabe 232ad15 af6eab9 6877edc af6eab9 6877edc 80b43a8 6877edc 80b43a8 6877edc 7ac5c7d 80b43a8 af6eab9 80b43a8 6877edc 7ac5c7d 3364e9c af6eab9 3364e9c 6312799 73fd4c0 3364e9c c08470b af6eab9 73fd4c0 3364e9c c3f9f52 98a98e1 c3f9f52 73fd4c0 7ac5c7d 3364e9c 4bc5468 6877edc 4bc5468 83015b3 6877edc 4bc5468 5d311f1 4bc5468 7ac5c7d af6eab9 6877edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import spaces
import tempfile
import gradio as gr
import subprocess
import os, stat
import uuid
from googletrans import Translator
from TTS.api import TTS
import ffmpeg
from faster_whisper import WhisperModel
from scipy.signal import wiener
import soundfile as sf
from pydub import AudioSegment
import numpy as np
import librosa
from zipfile import ZipFile
import shlex
import cv2
import torch
import torchvision
from tqdm import tqdm
from numba import jit
from huggingface_hub import HfApi
# Environment setup
HF_TOKEN = os.environ.get("HF_TOKEN")
os.environ["COQUI_TOS_AGREED"] = "1"
api = HfApi(token=HF_TOKEN)
repo_id = "artificialguybr/video-dubbing"
# Extract ffmpeg
ZipFile("ffmpeg.zip").extractall()
st = os.stat('ffmpeg')
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
# Initialize Whisper model
model_size = "small"
model = WhisperModel(model_size, device="cpu", compute_type="int8")
# Initialize TTS model
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
def check_for_faces(video_path):
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(video_path)
while True:
ret, frame = cap.read()
if not ret:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
if len(faces) > 0:
return True
return False
@spaces.GPU
def transcribe_audio(audio_path):
segments, info = model.transcribe(audio_path, beam_size=5)
whisper_text = " ".join(segment.text for segment in segments)
whisper_language = info.language
return whisper_text, whisper_language
@spaces.GPU
def generate_tts(text, speaker_wav, language_code):
tts.tts_to_file(text, speaker_wav=speaker_wav, file_path="output_synth.wav", language=language_code)
@spaces.GPU
def process_video(radio, video, target_language, has_closeup_face):
if target_language is None:
return gr.Error("Please select a Target Language for Dubbing.")
run_uuid = uuid.uuid4().hex[:6]
output_filename = f"{run_uuid}_resized_video.mp4"
ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run()
video_path = output_filename
if not os.path.exists(video_path):
return f"Error: {video_path} does not exist."
video_info = ffmpeg.probe(video_path)
video_duration = float(video_info['streams'][0]['duration'])
if video_duration > 60:
os.remove(video_path)
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run()
shell_command = f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ")
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
print("Attempting to transcribe with Whisper...")
try:
whisper_text, whisper_language = transcribe_audio(f"{run_uuid}_output_audio_final.wav")
print(f"Transcription successful: {whisper_text}")
except RuntimeError as e:
print(f"RuntimeError encountered: {str(e)}")
if "CUDA failed with error device-side assert triggered" in str(e):
gr.Warning("Error. Space needs to restart. Please retry in a minute")
api.restart_space(repo_id=repo_id)
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
target_language_code = language_mapping[target_language]
translator = Translator()
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
print(translated_text)
generate_tts(translated_text, f"{run_uuid}_output_audio_final.wav", target_language_code)
if has_closeup_face:
try:
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio 'output_synth.wav' --pads 0 15 0 0 --resize_factor 1 --nosmooth --outfile '{run_uuid}_output_video.mp4'"
subprocess.run(cmd, shell=True, check=True)
except subprocess.CalledProcessError as e:
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
cmd = f"ffmpeg -i {video_path} -i output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
subprocess.run(cmd, shell=True)
else:
cmd = f"ffmpeg -i {video_path} -i output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
subprocess.run(cmd, shell=True)
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
output_video_path = f"{run_uuid}_output_video.mp4"
# Cleanup
files_to_delete = [
f"{run_uuid}_resized_video.mp4",
f"{run_uuid}_output_audio.wav",
f"{run_uuid}_output_audio_final.wav",
"output_synth.wav"
]
for file in files_to_delete:
try:
os.remove(file)
except FileNotFoundError:
print(f"File {file} not found for deletion.")
return output_video_path
def swap(radio):
return gr.update(source="upload" if radio == "Upload" else "webcam")
# Gradio interface setup
video = gr.Video()
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
iface = gr.Interface(
fn=process_video,
inputs=[
radio,
video,
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
gr.Checkbox(label="Video has a close-up face. Use Wav2lip.", value=False, info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
],
outputs=gr.Video(),
live=False,
title="AI Video Dubbing",
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code. Test the [Video Transcription and Translate](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) space!""",
allow_flagging=False
)
with gr.Blocks() as demo:
iface.render()
radio.change(swap, inputs=[radio], outputs=video)
gr.Markdown("""
**Note:**
- Video limit is 1 minute. It will dubbing all people using just one voice.
- Generation may take up to 5 minutes.
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
- The tool uses open-source models for all models. It's an alpha version.
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
""")
demo.queue(concurrency_count=1, max_size=15)
demo.launch()
|