Spaces:
Runtime error
Runtime error
import os | |
import pinecone | |
import gradio as gr | |
from openai import OpenAI | |
from typing import Callable | |
import google.generativeai as genai | |
from huggingface_hub import hf_hub_download | |
def download_prompt(name_prompt: str) -> str: | |
""" | |
Downloads prompt from HuggingFace Hub | |
:param name_prompt: name of the file | |
:return: text of the file | |
""" | |
hf_hub_download( | |
repo_id=os.environ.get('DATA'), repo_type='dataset', filename=f"{name_prompt}.txt", | |
token=os.environ.get('HUB_TOKEN'), local_dir="prompts" | |
) | |
with open(f'prompts/{name_prompt}.txt', mode='r', encoding='utf-8') as infile: | |
prompt = infile.read() | |
return prompt | |
def start_chat(model: str) -> tuple[gr.helpers, gr.helpers, gr.helpers, gr.helpers]: | |
""" | |
Shows the chatbot interface and hides the selection of the model. | |
Returns gradio helpers (gr.update()) | |
:param model: name of the model to use | |
:return: visible=False, visible=True, visible=True, value=selected_model | |
""" | |
no_visible = gr.update(visible=False) | |
visible = gr.update(visible=True) | |
title = gr.update(value=f"# {model}") | |
return no_visible, visible, visible, title | |
def restart_chat() -> tuple[gr.helpers, gr.helpers, gr.helpers, list, str]: | |
""" | |
Shows the selection of the model, hides the chatbot interface and restarts the chatbot. | |
Returns gradio helpers (gr.update()) | |
:return: visible=True, visible=False, visible=False, empty list, empty string | |
""" | |
no_visible = gr.update(visible=False) | |
visible = gr.update(visible=True) | |
return visible, no_visible, no_visible, [], "" | |
def get_answer(chatbot: list[tuple[str, str]], message: str, model: str) -> tuple[list[tuple[str, str]], str]: | |
""" | |
Calls the model and returns the answer | |
:param chatbot: message history | |
:param message: user input | |
:param model: name of the model | |
:return: chatbot answer | |
""" | |
# Setup which function will be called (depends on the model) | |
call_model = COMPANIES[model]['calling'] | |
# Get standalone question | |
standalone_question = _get_standalone_question(chatbot, message, call_model) | |
# Get context | |
context = _get_context(standalone_question) | |
# Get answer from the Chatbot | |
prompt = PROMPT_GENERAL.replace('CONTEXT', context) | |
answer = call_model(prompt, chatbot, message) | |
# Add the new answer to the history | |
chatbot.append((message, answer)) | |
return chatbot, "" | |
def _get_standalone_question( | |
chat_history: list[tuple[str, str]], message: str, call_model: Callable[[str, list, str], str] | |
) -> str: | |
""" | |
To get a better context a standalone question is obtained for each question | |
:param chat_history: message history | |
:param message: user input | |
:param call_model: name of the model | |
:return: standalone phrase | |
""" | |
# Format the message history like: Human: blablablá \nAssistant: blablablá | |
history = '' | |
for i, (user, bot) in enumerate(chat_history): | |
if i == 0: | |
history += f'Assistant: {bot}\n' | |
else: | |
history += f'Human: {user}\n' | |
history += f'Assistant: {bot}\n' | |
# Add history and question to the prompt | |
prompt = PROMPT_STANDALONE.replace('HISTORY', history) | |
question = f'Follow-up message: {message}' | |
return call_model(prompt, [], question) | |
def _get_embedding(text: str) -> list[float]: | |
""" | |
:param text: input text | |
:return: embedding | |
""" | |
response = OPENAI_CLIENT.embeddings.create( | |
input=text, | |
model='text-embedding-ada-002' | |
) | |
return response.data[0].embedding | |
def _get_context(question: str) -> str: | |
""" | |
Get the 10 nearest vectors to the given input | |
:param question: standalone question | |
:return: formatted context with the nearest vectors | |
""" | |
result = INDEX.query( | |
vector=_get_embedding(question), | |
top_k=10, | |
include_metadata=True, | |
namespace=f'{CLIENT}-context' | |
)['matches'] | |
context = '' | |
for r in result: | |
context += r['metadata']['Text'] + '\n\n' | |
return context | |
def _call_openai(prompt: str, chat_history: list[tuple[str, str]], question: str) -> str: | |
""" | |
Calls ChatGPT 4 | |
:param prompt: prompt with the context or the question (in the case of the standalone one) | |
:param chat_history: history of the conversation | |
:param question: user input | |
:return: chatbot answer | |
""" | |
# Format the message history to the one used by OpenAI | |
msg_history = [{'role': 'system', 'content': prompt}] | |
for i, (user, bot) in enumerate(chat_history): | |
msg_history.append({'role': 'user', 'content': user}) | |
msg_history.append({'role': 'assistant', 'content': bot}) | |
msg_history.append({'role': 'user', 'content': question}) | |
# Call ChatGPT 4 | |
response = OPENAI_CLIENT.chat.completions.create( | |
model='gpt-4-turbo-preview', | |
temperature=0.5, | |
messages=msg_history | |
) | |
return response.choices[0].message.content | |
def _call_google(prompt: str, chat_history: list[tuple[str, str]], question: str) -> str: | |
""" | |
Calls Gemini | |
:param prompt: prompt with the context or the question (in the case of the standalone one) | |
:param chat_history: history of the conversation | |
:param question: user input | |
:return: chatbot answer | |
""" | |
# Format the message history to the one used by Google | |
history = [ | |
{'role': 'user', 'parts': [prompt]}, | |
{'role': 'model', 'parts': ['Excelente! Estoy super lista para ayudarte en lo que necesites']} | |
] | |
for i, (user, bot) in enumerate(chat_history): | |
history.append({'role': 'user', 'parts': [user]}) | |
history.append({'role': 'model', 'parts': [bot]}) | |
convo = GEMINI.start_chat(history=history) | |
# Call Gemini | |
convo.send_message(question) | |
return convo.last.text | |
# ----------------------------------------- Setup constants and models ------------------------------------------------ | |
OPENAI_CLIENT = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
genai.configure(api_key=os.getenv("GEMINI_API_KEY")) | |
pinecone.init(api_key=os.getenv('PINECONE_API_KEY'), environment=os.getenv("PINECONE_ENVIRONMENT")) | |
INDEX = pinecone.Index(os.getenv('PINECONE_INDEX')) | |
CLIENT = os.getenv('CLIENT') | |
# Setup Gemini | |
generation_config = { | |
"temperature": 0.9, | |
"top_p": 1, | |
"top_k": 1, | |
"max_output_tokens": 2048, | |
} | |
safety_settings = [ | |
{ | |
"category": "HARM_CATEGORY_HARASSMENT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_HATE_SPEECH", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
{ | |
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", | |
"threshold": "BLOCK_ONLY_HIGH" | |
}, | |
{ | |
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", | |
"threshold": "BLOCK_MEDIUM_AND_ABOVE" | |
}, | |
] | |
GEMINI = genai.GenerativeModel( | |
model_name="gemini-1.0-pro", generation_config=generation_config, safety_settings=safety_settings | |
) | |
# Download and open prompts from HuggingFace Hub | |
os.makedirs('prompts', exist_ok=True) | |
PROMPT_STANDALONE = download_prompt('standalone') | |
PROMPT_GENERAL = download_prompt('general') | |
# Constants used in the app | |
COMPANIES = { | |
'Model G': {'calling': _call_google, 'real name': 'Gemini'}, | |
'Model C': {'calling': _call_openai, 'real name': 'ChatGPT 4'}, | |
} | |
MODELS = list(COMPANIES.keys()) | |