detection_metrics / detection_metrics.py
AlekseyKorshuk's picture
Upload 14 files
46a3752 verified
raw
history blame
7.55 kB
from typing import Dict, List, Union
from pathlib import Path
import datasets
import torch
import evaluate
import json
from tqdm import tqdm
from detection_metrics.pycocotools.coco import COCO
from detection_metrics.coco_evaluate import COCOEvaluator
from detection_metrics.utils import _TYPING_PREDICTION, _TYPING_REFERENCE
_DESCRIPTION = "This class evaluates object detection models using the COCO dataset \
and its evaluation metrics."
_HOMEPAGE = "https://cocodataset.org"
_CITATION = """
@misc{lin2015microsoft, \
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and \
Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick \
and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
"""
_REFERENCE_URLS = [
"https://ieeexplore.ieee.org/abstract/document/9145130",
"https://www.mdpi.com/2079-9292/10/3/279",
"https://cocodataset.org/#detection-eval",
]
_KWARGS_DESCRIPTION = """\
Computes COCO metrics for object detection: AP(mAP) and its variants.
Args:
coco (COCO): COCO Evaluator object for evaluating predictions.
**kwargs: Additional keyword arguments forwarded to evaluate.Metrics.
"""
class EvaluateObjectDetection(evaluate.Metric):
"""
Class for evaluating object detection models.
"""
def __init__(self, json_gt: Union[Path, Dict], iou_type: str = "bbox", **kwargs):
"""
Initializes the EvaluateObjectDetection class.
Args:
json_gt: JSON with ground-truth annotations in COCO format.
# coco_groundtruth (COCO): COCO Evaluator object for evaluating predictions.
**kwargs: Additional keyword arguments forwarded to evaluate.Metrics.
"""
super().__init__(**kwargs)
# Create COCO object from ground-truth annotations
if isinstance(json_gt, Path):
assert json_gt.exists(), f"Path {json_gt} does not exist."
with open(json_gt) as f:
json_data = json.load(f)
elif isinstance(json_gt, dict):
json_data = json_gt
coco = COCO(json_data)
self.coco_evaluator = COCOEvaluator(coco, [iou_type])
def remove_classes(self, classes_to_remove: List[str]):
to_remove = [c.upper() for c in classes_to_remove]
cats = {}
for id, cat in self.coco_evaluator.coco_eval["bbox"].cocoGt.cats.items():
if cat["name"].upper() not in to_remove:
cats[id] = cat
self.coco_evaluator.coco_eval["bbox"].cocoGt.cats = cats
self.coco_evaluator.coco_gt.cats = cats
self.coco_evaluator.coco_gt.dataset["categories"] = list(cats.values())
self.coco_evaluator.coco_eval["bbox"].params.catIds = [c["id"] for c in cats.values()]
def _info(self):
"""
Returns the MetricInfo object with information about the module.
Returns:
evaluate.MetricInfo: Metric information object.
"""
return evaluate.MetricInfo(
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": [
datasets.Features(
{
"scores": datasets.Sequence(datasets.Value("float")),
"labels": datasets.Sequence(datasets.Value("int64")),
"boxes": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
}
)
],
"references": [
datasets.Features(
{
"image_id": datasets.Sequence(datasets.Value("int64")),
}
)
],
}
),
# Homepage of the module for documentation
homepage=_HOMEPAGE,
# Additional links to the codebase or references
reference_urls=_REFERENCE_URLS,
)
def _preprocess(
self, predictions: List[Dict[str, torch.Tensor]]
) -> List[_TYPING_PREDICTION]:
"""
Preprocesses the predictions before computing the scores.
Args:
predictions (List[Dict[str, torch.Tensor]]): A list of prediction dicts.
Returns:
List[_TYPING_PREDICTION]: A list of preprocessed prediction dicts.
"""
processed_predictions = []
for pred in predictions:
processed_pred: _TYPING_PREDICTION = {}
for k, val in pred.items():
if isinstance(val, torch.Tensor):
val = val.detach().cpu().tolist()
if k == "labels":
val = list(map(int, val))
processed_pred[k] = val
processed_predictions.append(processed_pred)
return processed_predictions
def _clear_predictions(self, predictions):
# Remove unnecessary keys from predictions
required = ["scores", "labels", "boxes"]
ret = []
for prediction in predictions:
ret.append({k: v for k, v in prediction.items() if k in required})
return ret
def _clear_references(self, references):
required = [""]
ret = []
for ref in references:
ret.append({k: v for k, v in ref.items() if k in required})
return ret
def add(self, *, prediction = None, reference = None, **kwargs):
"""
Preprocesses the predictions and references and calls the parent class function.
Args:
prediction: A list of prediction dicts.
reference: A list of reference dicts.
**kwargs: Additional keyword arguments.
"""
if prediction is not None:
prediction = self._clear_predictions(prediction)
prediction = self._preprocess(prediction)
res = {} # {image_id} : prediction
for output, target in zip(prediction, reference):
res[target["image_id"][0]] = output
self.coco_evaluator.update(res)
super(evaluate.Metric, self).add(prediction=prediction, references=reference, **kwargs)
def _compute(
self,
predictions: List[List[_TYPING_PREDICTION]],
references: List[List[_TYPING_REFERENCE]],
) -> Dict[str, Dict[str, float]]:
"""
Returns the evaluation scores.
Args:
predictions (List[List[_TYPING_PREDICTION]]): A list of predictions.
references (List[List[_TYPING_REFERENCE]]): A list of references.
Returns:
Dict: A dictionary containing evaluation scores.
"""
print("Synchronizing processes")
self.coco_evaluator.synchronize_between_processes()
print("Accumulating values")
self.coco_evaluator.accumulate()
print("Summarizing results")
self.coco_evaluator.summarize()
stats = self.coco_evaluator.get_results()
return stats