Dr. Richard Zinck
Single gui
17842a5
raw
history blame
23.7 kB
import concurrent.futures
import os
import sys
from multiprocessing import freeze_support
import gradio as gr
import webview
import bat_ident
import config as cfg
import segments
import utils
import logging
import librosa
logging.basicConfig(filename='bat_gui.log', encoding='utf-8', level=logging.DEBUG)
_WINDOW: webview.Window
_AREA_ONE = "EU"
_AREA_TWO = "Bavaria"
_AREA_THREE = "USA"
_AREA_FOUR = "Scotland"
_AREA_FIFE = "UK"
#
# MODEL part mixed with CONTROLER
#
OUTPUT_TYPE_MAP = {"Raven selection table": "table", "Audacity": "audacity", "R": "r", "CSV": "csv"}
ORIGINAL_MODEL_PATH = cfg.MODEL_PATH
ORIGINAL_MDATA_MODEL_PATH = cfg.MDATA_MODEL_PATH
ORIGINAL_LABELS_FILE = cfg.LABELS_FILE
ORIGINAL_TRANSLATED_LABELS_PATH = cfg.TRANSLATED_BAT_LABELS_PATH # cfg.TRANSLATED_LABELS_PATH
def analyzeFile_wrapper(entry):
#return (entry[0], analyze.analyzeFile(entry))
return (entry[0], bat_ident.analyze_file(entry))
def validate(value, msg):
"""Checks if the value ist not falsy.
If the value is falsy, an error will be raised.
Args:
value: Value to be tested.
msg: Message in case of an error.
"""
if not value:
raise gr.Error(msg)
def runBatchAnalysis(
output_path,
confidence,
sensitivity,
overlap,
species_list_choice,
locale,
batch_size,
threads,
input_dir,
output_type_radio,
progress=gr.Progress(),
):
validate(input_dir, "Please select a directory.")
batch_size = int(batch_size)
threads = int(threads)
return runAnalysis(
species_list_choice,
None,
output_path,
confidence,
sensitivity,
overlap,
output_type_radio,
"en" if not locale else locale,
batch_size,
threads,
input_dir,
progress,
)
def runSingleFileAnalysis(input_path,
confidence,
sensitivity,
overlap,
species_list_choice,
locale):
validate(input_path, "Please select a file.")
logging.info('first level')
return runAnalysis(
species_list_choice,
input_path,
None,
confidence,
sensitivity,
overlap,
"csv",
"en" if not locale else locale,
1,
4,
None,
progress=None,
)
def runAnalysis(
species_list_choice: str,
input_path: str,
output_path: str | None,
confidence: float,
sensitivity: float,
overlap: float,
output_type: str,
locale: str,
batch_size: int,
threads: int,
input_dir: str,
progress: gr.Progress | None,
):
"""Starts the analysis.
Args:
input_path: Either a file or directory.
output_path: The output path for the result, if None the input_path is used
confidence: The selected minimum confidence.
sensitivity: The selected sensitivity.
overlap: The selected segment overlap.
species_list_choice: The choice for the species list.
species_list_file: The selected custom species list file.
lat: The selected latitude.
lon: The selected longitude.
week: The selected week of the year.
use_yearlong: Use yearlong instead of week.
sf_thresh: The threshold for the predicted species list.
custom_classifier_file: Custom classifier to be used.
output_type: The type of result to be generated.
locale: The translation to be used.
batch_size: The number of samples in a batch.
threads: The number of threads to be used.
input_dir: The input directory.
progress: The gradio progress bar.
"""
logging.info('second level')
if progress is not None:
progress(0, desc="Preparing ...")
# locale = locale.lower()
# Load eBird codes, labels
#cfg.CODES = analyze.loadCodes()
# cfg.LABELS = utils.readLines(ORIGINAL_LABELS_FILE)
cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK = -1, -1, -1
cfg.LOCATION_FILTER_THRESHOLD = 0.03
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
cfg.BAT_CLASSIFIER_LOCATION = os.path.join(script_dir, cfg.BAT_CLASSIFIER_LOCATION)
if species_list_choice == "Bavaria":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "de"
elif species_list_choice == "EU":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
elif species_list_choice == "Scotland":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
elif species_list_choice == "UK":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
elif species_list_choice == "USA":
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
else:
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite"
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt"
cfg.LABELS = utils.readLines(cfg.LABELS_FILE)
cfg.LATITUDE = -1
cfg.LONGITUDE = -1
cfg.SPECIES_LIST_FILE = None
cfg.SPECIES_LIST = []
locale = "en"
# Load translated labels
lfile = os.path.join(cfg.TRANSLATED_BAT_LABELS_PATH,
os.path.basename(cfg.LABELS_FILE).replace(".txt", f"_{locale}.txt"))
if not locale in ["en"] and os.path.isfile(lfile):
cfg.TRANSLATED_LABELS = utils.readLines(lfile)
else:
cfg.TRANSLATED_LABELS = cfg.LABELS
if len(cfg.SPECIES_LIST) == 0:
print(f"Species list contains {len(cfg.LABELS)} species")
else:
print(f"Species list contains {len(cfg.SPECIES_LIST)} species")
cfg.INPUT_PATH = input_path
if input_dir:
cfg.OUTPUT_PATH = output_path if output_path else input_dir
else:
cfg.OUTPUT_PATH = output_path if output_path else input_path.split(".", 1)[0] + ".csv"
# Parse input files
if input_dir:
cfg.FILE_LIST = utils.collect_audio_files(input_dir)
cfg.INPUT_PATH = input_dir
elif os.path.isdir(cfg.INPUT_PATH):
cfg.FILE_LIST = utils.collect_audio_files(cfg.INPUT_PATH)
else:
cfg.FILE_LIST = [cfg.INPUT_PATH]
validate(cfg.FILE_LIST, "No audio files found.")
cfg.MIN_CONFIDENCE = confidence
cfg.SIGMOID_SENSITIVITY = sensitivity
cfg.SIG_OVERLAP = overlap
# Set result type
cfg.RESULT_TYPE = OUTPUT_TYPE_MAP[output_type] if output_type in OUTPUT_TYPE_MAP else output_type.lower()
if not cfg.RESULT_TYPE in ["table", "audacity", "r", "csv"]:
cfg.RESULT_TYPE = "table"
# Set number of threads
if input_dir:
cfg.CPU_THREADS = max(1, int(threads))
cfg.TFLITE_THREADS = 1
else:
cfg.CPU_THREADS = 1
cfg.TFLITE_THREADS = max(1, int(threads))
# Set batch size
cfg.BATCH_SIZE = max(1, int(batch_size))
flist = []
for f in cfg.FILE_LIST:
flist.append((f, cfg.get_config()))
result_list = []
if progress is not None:
progress(0, desc="Starting ...")
# Analyze files
if cfg.CPU_THREADS < 2:
for entry in flist:
result = analyzeFile_wrapper(entry)
result_list.append(result)
else:
executor = None
with concurrent.futures.ProcessPoolExecutor(max_workers=cfg.CPU_THREADS) as executor:
futures = (executor.submit(analyzeFile_wrapper, arg) for arg in flist)
for i, f in enumerate(concurrent.futures.as_completed(futures), start=1):
if progress is not None:
progress((i, len(flist)), total=len(flist), unit="files")
result = f.result()
result_list.append(result)
return [[os.path.relpath(r[0], input_dir), r[1]] for r in result_list] if input_dir else cfg.OUTPUT_PATH
def extractSegments_wrapper(entry):
return (entry[0][0], segments.extractSegments(entry))
def extract_segments(audio_dir, result_dir, output_dir, min_conf, num_seq, seq_length, threads, progress=gr.Progress()):
validate(audio_dir, "No audio directory selected")
if not result_dir:
result_dir = audio_dir
if not output_dir:
output_dir = audio_dir
if progress is not None:
progress(0, desc="Searching files ...")
# Parse audio and result folders
cfg.FILE_LIST = segments.parseFolders(audio_dir, result_dir)
# Set output folder
cfg.OUTPUT_PATH = output_dir
# Set number of threads
cfg.CPU_THREADS = int(threads)
# Set confidence threshold
cfg.MIN_CONFIDENCE = max(0.01, min(0.99, min_conf))
# Parse file list and make list of segments
cfg.FILE_LIST = segments.parseFiles(cfg.FILE_LIST, max(1, int(num_seq)))
# Add config items to each file list entry.
# We have to do this for Windows which does not
# support fork() and thus each process has to
# have its own config. USE LINUX!
flist = [(entry, max(cfg.SIG_LENGTH, float(seq_length)), cfg.get_config()) for entry in cfg.FILE_LIST]
result_list = []
# Extract segments
if cfg.CPU_THREADS < 2:
for i, entry in enumerate(flist):
result = extractSegments_wrapper(entry)
result_list.append(result)
if progress is not None:
progress((i, len(flist)), total=len(flist), unit="files")
else:
with concurrent.futures.ProcessPoolExecutor(max_workers=cfg.CPU_THREADS) as executor:
futures = (executor.submit(extractSegments_wrapper, arg) for arg in flist)
for i, f in enumerate(concurrent.futures.as_completed(futures), start=1):
if progress is not None:
progress((i, len(flist)), total=len(flist), unit="files")
result = f.result()
result_list.append(result)
return [[os.path.relpath(r[0], audio_dir), r[1]] for r in result_list]
def select_file(filetypes=()):
"""Creates a file selection dialog.
Args:
filetypes: List of filetypes to be filtered in the dialog.
Returns:
The selected file or None of the dialog was canceled.
"""
files = _WINDOW.create_file_dialog(webview.OPEN_DIALOG, file_types=filetypes)
return files[0] if files else None
def format_seconds(secs: float):
"""Formats a number of seconds into a string.
Formats the seconds into the format "h:mm:ss.ms"
Args:
secs: Number of seconds.
Returns:
A string with the formatted seconds.
"""
hours, secs = divmod(secs, 3600)
minutes, secs = divmod(secs, 60)
return "{:2.0f}:{:02.0f}:{:06.3f}".format(hours, minutes, secs)
def select_directory(collect_files=True):
"""Shows a directory selection system dialog.
Uses the pywebview to create a system dialog.
Args:
collect_files: If True, also lists a files inside the directory.
Returns:
If collect_files==True, returns (directory path, list of (relative file path, audio length))
else just the directory path.
All values will be None of the dialog is cancelled.
"""
dir_name = _WINDOW.create_file_dialog(webview.FOLDER_DIALOG)
if collect_files:
if not dir_name:
return None, None
files = utils.collect_audio_files(dir_name[0])
return dir_name[0], [
[os.path.relpath(file, dir_name[0]), format_seconds(librosa.get_duration(filename=file))] for file in files
]
return dir_name[0] if dir_name else None
def show_species_choice(choice: str):
"""Sets the visibility of the species list choices.
Args:
choice: The label of the currently active choice.
Returns:
A list of [
Row update,
File update,
Column update,
Column update,
]
"""
return [
gr.Row.update(visible=True),
gr.File.update(visible=False),
gr.Column.update(visible=False),
gr.Column.update(visible=False),
]
#
# VIEW - This is where the UI elements are defined
#
def sample_sliders(opened=True):
"""Creates the gradio accordion for the inference settings.
Args:
opened: If True the accordion is open on init.
Returns:
A tuple with the created elements:
(Slider (min confidence), Slider (sensitivity), Slider (overlap))
"""
with gr.Accordion("Inference settings", open=opened):
with gr.Row():
confidence_slider = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.01, label="Minimum Confidence", info="Minimum confidence threshold."
)
sensitivity_slider = gr.Slider(
minimum=0.5,
maximum=1.5,
value=1,
step=0.01,
label="Sensitivity",
info="Detection sensitivity; Higher values result in higher sensitivity.",
)
overlap_slider = gr.Slider(
minimum=0, maximum=2.99, value=0, step=0.01, label="Overlap", info="Overlap of prediction segments."
)
return confidence_slider, sensitivity_slider, overlap_slider
def locale():
"""Creates the gradio elements for locale selection
Reads the translated labels inside the checkpoints directory.
Returns:
The dropdown element.
"""
label_files = os.listdir(os.path.join(os.path.dirname(sys.argv[0]), ORIGINAL_TRANSLATED_LABELS_PATH))
options = ["EN"] + [label_file.rsplit("_", 1)[-1].split(".")[0].upper() for label_file in label_files]
return gr.Dropdown(options, value="EN", label="Locale", info="Locale for the translated species common names.",visible=False)
def species_lists(opened=True):
"""Creates the gradio accordion for species selection.
Args:
opened: If True the accordion is open on init.
Returns:
A tuple with the created elements:
(Radio (choice), File (custom species list), Slider (lat), Slider (lon), Slider (week), Slider (threshold), Checkbox (yearlong?), State (custom classifier))
"""
with gr.Accordion("Area selection", open=opened):
with gr.Row():
species_list_radio = gr.Radio(
[_AREA_ONE, _AREA_TWO, _AREA_THREE, _AREA_FOUR, _AREA_FIFE],
value="All regions",
label="Regions list",
info="List of all possible regions",
elem_classes="d-block",
)
# species_list_radio.change(
# show_species_choice,
# inputs=[species_list_radio],
# outputs=[ ],
# show_progress=False,
# )
#
return species_list_radio
#
# Design main frame for analysis of a single file
#
def build_single_analysis_tab():
with gr.Tab("Single file"):
audio_input = gr.Audio(type="filepath", label="file", elem_id="single_file_audio")
confidence_slider, sensitivity_slider, overlap_slider = sample_sliders(False)
species_list_radio = species_lists(False)
locale_radio = locale()
inputs = [
audio_input,
confidence_slider,
sensitivity_slider,
overlap_slider,
species_list_radio,
locale_radio
]
output_dataframe = gr.Dataframe(
type="pandas",
headers=["Start (s)", "End (s)", "Scientific name", "Common name", "Confidence"],
elem_classes="mh-200",
)
single_file_analyze = gr.Button("Analyze")
single_file_analyze.click(runSingleFileAnalysis,
inputs=inputs,
outputs=output_dataframe,
)
def build_multi_analysis_tab():
with gr.Tab("Multiple files"):
input_directory_state = gr.State()
output_directory_predict_state = gr.State()
with gr.Row():
with gr.Column():
select_directory_btn = gr.Button("Select directory (recursive)")
directory_input = gr.Matrix(interactive=False, elem_classes="mh-200", headers=["Subpath", "Length"])
def select_directory_on_empty():
res = select_directory()
return res if res[1] else [res[0], [["No files found"]]]
select_directory_btn.click(
select_directory_on_empty, outputs=[input_directory_state, directory_input], show_progress=True
)
with gr.Column():
select_out_directory_btn = gr.Button("Select output directory.")
selected_out_textbox = gr.Textbox(
label="Output directory",
interactive=False,
placeholder="If not selected, the input directory will be used.",
)
def select_directory_wrapper():
return (select_directory(collect_files=False),) * 2
select_out_directory_btn.click(
select_directory_wrapper,
outputs=[output_directory_predict_state, selected_out_textbox],
show_progress=False,
)
confidence_slider, sensitivity_slider, overlap_slider = sample_sliders()
species_list_radio = species_lists(False)
output_type_radio = gr.Radio(
list(OUTPUT_TYPE_MAP.keys()),
value="Raven selection table",
label="Result type",
info="Specifies output format.",
)
with gr.Row():
batch_size_number = gr.Number(
precision=1, label="Batch size", value=1, info="Number of samples to process at the same time."
)
threads_number = gr.Number(precision=1, label="Threads", value=4, info="Number of CPU threads.")
locale_radio = locale()
start_batch_analysis_btn = gr.Button("Analyze")
result_grid = gr.Matrix(headers=["File", "Execution"], elem_classes="mh-200")
inputs = [
output_directory_predict_state,
confidence_slider,
sensitivity_slider,
overlap_slider,
species_list_radio,
locale_radio,
batch_size_number,
threads_number,
input_directory_state,
output_type_radio
]
start_batch_analysis_btn.click(runBatchAnalysis, inputs=inputs, outputs=result_grid)
def build_segments_tab():
with gr.Tab("Segments"):
audio_directory_state = gr.State()
result_directory_state = gr.State()
output_directory_state = gr.State()
def select_directory_to_state_and_tb():
return (select_directory(collect_files=False),) * 2
with gr.Row():
select_audio_directory_btn = gr.Button("Select audio directory (recursive)")
selected_audio_directory_tb = gr.Textbox(show_label=False, interactive=False)
select_audio_directory_btn.click(
select_directory_to_state_and_tb,
outputs=[selected_audio_directory_tb, audio_directory_state],
show_progress=False,
)
with gr.Row():
select_result_directory_btn = gr.Button("Select result directory")
selected_result_directory_tb = gr.Textbox(
show_label=False, interactive=False, placeholder="Same as audio directory if not selected"
)
select_result_directory_btn.click(
select_directory_to_state_and_tb,
outputs=[result_directory_state, selected_result_directory_tb],
show_progress=False,
)
with gr.Row():
select_output_directory_btn = gr.Button("Select output directory")
selected_output_directory_tb = gr.Textbox(
show_label=False, interactive=False, placeholder="Same as audio directory if not selected"
)
select_output_directory_btn.click(
select_directory_to_state_and_tb,
outputs=[selected_output_directory_tb, output_directory_state],
show_progress=False,
)
min_conf_slider = gr.Slider(
minimum=0.1, maximum=0.99, step=0.01, label="Minimum confidence", info="Minimum confidence threshold."
)
num_seq_number = gr.Number(
100, label="Max number of segments", info="Maximum number of randomly extracted segments per species."
)
seq_length_number = gr.Number(3.0, label="Sequence length", info="Length of extracted segments in seconds.")
threads_number = gr.Number(4, label="Threads", info="Number of CPU threads.")
extract_segments_btn = gr.Button("Extract segments")
result_grid = gr.Matrix(headers=["File", "Execution"], elem_classes="mh-200")
extract_segments_btn.click(
extract_segments,
inputs=[
audio_directory_state,
result_directory_state,
output_directory_state,
min_conf_slider,
num_seq_number,
seq_length_number,
threads_number,
],
outputs=result_grid,
)
if __name__ == "__main__":
freeze_support()
with gr.Blocks(
css=r".d-block .wrap {display: block !important;} .mh-200 {max-height: 300px; overflow-y: auto !important;} footer {display: none !important;} #single_file_audio, #single_file_audio * {max-height: 81.6px; min-height: 0;}",
theme=gr.themes.Default(),
analytics_enabled=False,
) as demo:
build_single_analysis_tab()
# build_multi_analysis_tab()
# build_segments_tab()
demo.launch()
#url = demo.queue(api_open=False).launch(prevent_thread_lock=True, quiet=True)[1]
#_WINDOW = webview.create_window("BattyBirdNET-Analyzer", url.rstrip("/") +
# "?__theme=light", min_size=(1024, 768))
# webview.start(private_mode=False)