Spaces:
Runtime error
Runtime error
import concurrent.futures | |
import os | |
import sys | |
from multiprocessing import freeze_support | |
import gradio as gr | |
import webview | |
import bat_ident | |
import config as cfg | |
import segments | |
import utils | |
import logging | |
import librosa | |
logging.basicConfig(filename='bat_gui.log', encoding='utf-8', level=logging.DEBUG) | |
_WINDOW: webview.Window | |
_AREA_ONE = "EU" | |
_AREA_TWO = "Bavaria" | |
_AREA_THREE = "USA" | |
_AREA_FOUR = "Scotland" | |
_AREA_FIFE = "UK" | |
# | |
# MODEL part mixed with CONTROLER | |
# | |
OUTPUT_TYPE_MAP = {"Raven selection table": "table", "Audacity": "audacity", "R": "r", "CSV": "csv"} | |
ORIGINAL_MODEL_PATH = cfg.MODEL_PATH | |
ORIGINAL_MDATA_MODEL_PATH = cfg.MDATA_MODEL_PATH | |
ORIGINAL_LABELS_FILE = cfg.LABELS_FILE | |
ORIGINAL_TRANSLATED_LABELS_PATH = cfg.TRANSLATED_BAT_LABELS_PATH # cfg.TRANSLATED_LABELS_PATH | |
def analyzeFile_wrapper(entry): | |
#return (entry[0], analyze.analyzeFile(entry)) | |
return (entry[0], bat_ident.analyze_file(entry)) | |
def validate(value, msg): | |
"""Checks if the value ist not falsy. | |
If the value is falsy, an error will be raised. | |
Args: | |
value: Value to be tested. | |
msg: Message in case of an error. | |
""" | |
if not value: | |
raise gr.Error(msg) | |
def runBatchAnalysis( | |
output_path, | |
confidence, | |
sensitivity, | |
overlap, | |
species_list_choice, | |
locale, | |
batch_size, | |
threads, | |
input_dir, | |
output_type_radio, | |
progress=gr.Progress(), | |
): | |
validate(input_dir, "Please select a directory.") | |
batch_size = int(batch_size) | |
threads = int(threads) | |
return runAnalysis( | |
species_list_choice, | |
None, | |
output_path, | |
confidence, | |
sensitivity, | |
overlap, | |
output_type_radio, | |
"en" if not locale else locale, | |
batch_size, | |
threads, | |
input_dir, | |
progress, | |
) | |
def runSingleFileAnalysis(input_path, | |
confidence, | |
sensitivity, | |
overlap, | |
species_list_choice, | |
locale): | |
validate(input_path, "Please select a file.") | |
logging.info('first level') | |
return runAnalysis( | |
species_list_choice, | |
input_path, | |
None, | |
confidence, | |
sensitivity, | |
overlap, | |
"csv", | |
"en" if not locale else locale, | |
1, | |
4, | |
None, | |
progress=None, | |
) | |
def runAnalysis( | |
species_list_choice: str, | |
input_path: str, | |
output_path: str | None, | |
confidence: float, | |
sensitivity: float, | |
overlap: float, | |
output_type: str, | |
locale: str, | |
batch_size: int, | |
threads: int, | |
input_dir: str, | |
progress: gr.Progress | None, | |
): | |
"""Starts the analysis. | |
Args: | |
input_path: Either a file or directory. | |
output_path: The output path for the result, if None the input_path is used | |
confidence: The selected minimum confidence. | |
sensitivity: The selected sensitivity. | |
overlap: The selected segment overlap. | |
species_list_choice: The choice for the species list. | |
species_list_file: The selected custom species list file. | |
lat: The selected latitude. | |
lon: The selected longitude. | |
week: The selected week of the year. | |
use_yearlong: Use yearlong instead of week. | |
sf_thresh: The threshold for the predicted species list. | |
custom_classifier_file: Custom classifier to be used. | |
output_type: The type of result to be generated. | |
locale: The translation to be used. | |
batch_size: The number of samples in a batch. | |
threads: The number of threads to be used. | |
input_dir: The input directory. | |
progress: The gradio progress bar. | |
""" | |
logging.info('second level') | |
if progress is not None: | |
progress(0, desc="Preparing ...") | |
# locale = locale.lower() | |
# Load eBird codes, labels | |
#cfg.CODES = analyze.loadCodes() | |
# cfg.LABELS = utils.readLines(ORIGINAL_LABELS_FILE) | |
cfg.LATITUDE, cfg.LONGITUDE, cfg.WEEK = -1, -1, -1 | |
cfg.LOCATION_FILTER_THRESHOLD = 0.03 | |
script_dir = os.path.dirname(os.path.abspath(sys.argv[0])) | |
cfg.BAT_CLASSIFIER_LOCATION = os.path.join(script_dir, cfg.BAT_CLASSIFIER_LOCATION) | |
if species_list_choice == "Bavaria": | |
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz.tflite" | |
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Bavaria-144kHz_Labels.txt" | |
cfg.LABELS = utils.readLines(cfg.LABELS_FILE) | |
cfg.LATITUDE = -1 | |
cfg.LONGITUDE = -1 | |
cfg.SPECIES_LIST_FILE = None | |
cfg.SPECIES_LIST = [] | |
locale = "de" | |
elif species_list_choice == "EU": | |
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite" | |
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt" | |
cfg.LABELS = utils.readLines(cfg.LABELS_FILE) | |
cfg.LATITUDE = -1 | |
cfg.LONGITUDE = -1 | |
cfg.SPECIES_LIST_FILE = None | |
cfg.SPECIES_LIST = [] | |
locale = "en" | |
elif species_list_choice == "Scotland": | |
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz.tflite" | |
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-Scotland-144kHz_Labels.txt" | |
cfg.LABELS = utils.readLines(cfg.LABELS_FILE) | |
cfg.LATITUDE = -1 | |
cfg.LONGITUDE = -1 | |
cfg.SPECIES_LIST_FILE = None | |
cfg.SPECIES_LIST = [] | |
locale = "en" | |
elif species_list_choice == "UK": | |
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz.tflite" | |
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-UK-144kHz_Labels.txt" | |
cfg.LABELS = utils.readLines(cfg.LABELS_FILE) | |
cfg.LATITUDE = -1 | |
cfg.LONGITUDE = -1 | |
cfg.SPECIES_LIST_FILE = None | |
cfg.SPECIES_LIST = [] | |
locale = "en" | |
elif species_list_choice == "USA": | |
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz.tflite" | |
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-USA-144kHz_Labels.txt" | |
cfg.LABELS = utils.readLines(cfg.LABELS_FILE) | |
cfg.LATITUDE = -1 | |
cfg.LONGITUDE = -1 | |
cfg.SPECIES_LIST_FILE = None | |
cfg.SPECIES_LIST = [] | |
locale = "en" | |
else: | |
cfg.CUSTOM_CLASSIFIER = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz.tflite" | |
cfg.LABELS_FILE = cfg.BAT_CLASSIFIER_LOCATION + "/BattyBirdNET-EU-144kHz_Labels.txt" | |
cfg.LABELS = utils.readLines(cfg.LABELS_FILE) | |
cfg.LATITUDE = -1 | |
cfg.LONGITUDE = -1 | |
cfg.SPECIES_LIST_FILE = None | |
cfg.SPECIES_LIST = [] | |
locale = "en" | |
# Load translated labels | |
lfile = os.path.join(cfg.TRANSLATED_BAT_LABELS_PATH, | |
os.path.basename(cfg.LABELS_FILE).replace(".txt", f"_{locale}.txt")) | |
if not locale in ["en"] and os.path.isfile(lfile): | |
cfg.TRANSLATED_LABELS = utils.readLines(lfile) | |
else: | |
cfg.TRANSLATED_LABELS = cfg.LABELS | |
if len(cfg.SPECIES_LIST) == 0: | |
print(f"Species list contains {len(cfg.LABELS)} species") | |
else: | |
print(f"Species list contains {len(cfg.SPECIES_LIST)} species") | |
cfg.INPUT_PATH = input_path | |
if input_dir: | |
cfg.OUTPUT_PATH = output_path if output_path else input_dir | |
else: | |
cfg.OUTPUT_PATH = output_path if output_path else input_path.split(".", 1)[0] + ".csv" | |
# Parse input files | |
if input_dir: | |
cfg.FILE_LIST = utils.collect_audio_files(input_dir) | |
cfg.INPUT_PATH = input_dir | |
elif os.path.isdir(cfg.INPUT_PATH): | |
cfg.FILE_LIST = utils.collect_audio_files(cfg.INPUT_PATH) | |
else: | |
cfg.FILE_LIST = [cfg.INPUT_PATH] | |
validate(cfg.FILE_LIST, "No audio files found.") | |
cfg.MIN_CONFIDENCE = confidence | |
cfg.SIGMOID_SENSITIVITY = sensitivity | |
cfg.SIG_OVERLAP = overlap | |
# Set result type | |
cfg.RESULT_TYPE = OUTPUT_TYPE_MAP[output_type] if output_type in OUTPUT_TYPE_MAP else output_type.lower() | |
if not cfg.RESULT_TYPE in ["table", "audacity", "r", "csv"]: | |
cfg.RESULT_TYPE = "table" | |
# Set number of threads | |
if input_dir: | |
cfg.CPU_THREADS = max(1, int(threads)) | |
cfg.TFLITE_THREADS = 1 | |
else: | |
cfg.CPU_THREADS = 1 | |
cfg.TFLITE_THREADS = max(1, int(threads)) | |
# Set batch size | |
cfg.BATCH_SIZE = max(1, int(batch_size)) | |
flist = [] | |
for f in cfg.FILE_LIST: | |
flist.append((f, cfg.get_config())) | |
result_list = [] | |
if progress is not None: | |
progress(0, desc="Starting ...") | |
# Analyze files | |
if cfg.CPU_THREADS < 2: | |
for entry in flist: | |
result = analyzeFile_wrapper(entry) | |
result_list.append(result) | |
else: | |
executor = None | |
with concurrent.futures.ProcessPoolExecutor(max_workers=cfg.CPU_THREADS) as executor: | |
futures = (executor.submit(analyzeFile_wrapper, arg) for arg in flist) | |
for i, f in enumerate(concurrent.futures.as_completed(futures), start=1): | |
if progress is not None: | |
progress((i, len(flist)), total=len(flist), unit="files") | |
result = f.result() | |
result_list.append(result) | |
return [[os.path.relpath(r[0], input_dir), r[1]] for r in result_list] if input_dir else cfg.OUTPUT_PATH | |
def extractSegments_wrapper(entry): | |
return (entry[0][0], segments.extractSegments(entry)) | |
def extract_segments(audio_dir, result_dir, output_dir, min_conf, num_seq, seq_length, threads, progress=gr.Progress()): | |
validate(audio_dir, "No audio directory selected") | |
if not result_dir: | |
result_dir = audio_dir | |
if not output_dir: | |
output_dir = audio_dir | |
if progress is not None: | |
progress(0, desc="Searching files ...") | |
# Parse audio and result folders | |
cfg.FILE_LIST = segments.parseFolders(audio_dir, result_dir) | |
# Set output folder | |
cfg.OUTPUT_PATH = output_dir | |
# Set number of threads | |
cfg.CPU_THREADS = int(threads) | |
# Set confidence threshold | |
cfg.MIN_CONFIDENCE = max(0.01, min(0.99, min_conf)) | |
# Parse file list and make list of segments | |
cfg.FILE_LIST = segments.parseFiles(cfg.FILE_LIST, max(1, int(num_seq))) | |
# Add config items to each file list entry. | |
# We have to do this for Windows which does not | |
# support fork() and thus each process has to | |
# have its own config. USE LINUX! | |
flist = [(entry, max(cfg.SIG_LENGTH, float(seq_length)), cfg.get_config()) for entry in cfg.FILE_LIST] | |
result_list = [] | |
# Extract segments | |
if cfg.CPU_THREADS < 2: | |
for i, entry in enumerate(flist): | |
result = extractSegments_wrapper(entry) | |
result_list.append(result) | |
if progress is not None: | |
progress((i, len(flist)), total=len(flist), unit="files") | |
else: | |
with concurrent.futures.ProcessPoolExecutor(max_workers=cfg.CPU_THREADS) as executor: | |
futures = (executor.submit(extractSegments_wrapper, arg) for arg in flist) | |
for i, f in enumerate(concurrent.futures.as_completed(futures), start=1): | |
if progress is not None: | |
progress((i, len(flist)), total=len(flist), unit="files") | |
result = f.result() | |
result_list.append(result) | |
return [[os.path.relpath(r[0], audio_dir), r[1]] for r in result_list] | |
def select_file(filetypes=()): | |
"""Creates a file selection dialog. | |
Args: | |
filetypes: List of filetypes to be filtered in the dialog. | |
Returns: | |
The selected file or None of the dialog was canceled. | |
""" | |
files = _WINDOW.create_file_dialog(webview.OPEN_DIALOG, file_types=filetypes) | |
return files[0] if files else None | |
def format_seconds(secs: float): | |
"""Formats a number of seconds into a string. | |
Formats the seconds into the format "h:mm:ss.ms" | |
Args: | |
secs: Number of seconds. | |
Returns: | |
A string with the formatted seconds. | |
""" | |
hours, secs = divmod(secs, 3600) | |
minutes, secs = divmod(secs, 60) | |
return "{:2.0f}:{:02.0f}:{:06.3f}".format(hours, minutes, secs) | |
def select_directory(collect_files=True): | |
"""Shows a directory selection system dialog. | |
Uses the pywebview to create a system dialog. | |
Args: | |
collect_files: If True, also lists a files inside the directory. | |
Returns: | |
If collect_files==True, returns (directory path, list of (relative file path, audio length)) | |
else just the directory path. | |
All values will be None of the dialog is cancelled. | |
""" | |
dir_name = _WINDOW.create_file_dialog(webview.FOLDER_DIALOG) | |
if collect_files: | |
if not dir_name: | |
return None, None | |
files = utils.collect_audio_files(dir_name[0]) | |
return dir_name[0], [ | |
[os.path.relpath(file, dir_name[0]), format_seconds(librosa.get_duration(filename=file))] for file in files | |
] | |
return dir_name[0] if dir_name else None | |
def show_species_choice(choice: str): | |
"""Sets the visibility of the species list choices. | |
Args: | |
choice: The label of the currently active choice. | |
Returns: | |
A list of [ | |
Row update, | |
File update, | |
Column update, | |
Column update, | |
] | |
""" | |
return [ | |
gr.Row.update(visible=True), | |
gr.File.update(visible=False), | |
gr.Column.update(visible=False), | |
gr.Column.update(visible=False), | |
] | |
# | |
# VIEW - This is where the UI elements are defined | |
# | |
def sample_sliders(opened=True): | |
"""Creates the gradio accordion for the inference settings. | |
Args: | |
opened: If True the accordion is open on init. | |
Returns: | |
A tuple with the created elements: | |
(Slider (min confidence), Slider (sensitivity), Slider (overlap)) | |
""" | |
with gr.Accordion("Inference settings", open=opened): | |
with gr.Row(): | |
confidence_slider = gr.Slider( | |
minimum=0, maximum=1, value=0.5, step=0.01, label="Minimum Confidence", info="Minimum confidence threshold." | |
) | |
sensitivity_slider = gr.Slider( | |
minimum=0.5, | |
maximum=1.5, | |
value=1, | |
step=0.01, | |
label="Sensitivity", | |
info="Detection sensitivity; Higher values result in higher sensitivity.", | |
) | |
overlap_slider = gr.Slider( | |
minimum=0, maximum=2.99, value=0, step=0.01, label="Overlap", info="Overlap of prediction segments." | |
) | |
return confidence_slider, sensitivity_slider, overlap_slider | |
def locale(): | |
"""Creates the gradio elements for locale selection | |
Reads the translated labels inside the checkpoints directory. | |
Returns: | |
The dropdown element. | |
""" | |
label_files = os.listdir(os.path.join(os.path.dirname(sys.argv[0]), ORIGINAL_TRANSLATED_LABELS_PATH)) | |
options = ["EN"] + [label_file.rsplit("_", 1)[-1].split(".")[0].upper() for label_file in label_files] | |
return gr.Dropdown(options, value="EN", label="Locale", info="Locale for the translated species common names.",visible=False) | |
def species_lists(opened=True): | |
"""Creates the gradio accordion for species selection. | |
Args: | |
opened: If True the accordion is open on init. | |
Returns: | |
A tuple with the created elements: | |
(Radio (choice), File (custom species list), Slider (lat), Slider (lon), Slider (week), Slider (threshold), Checkbox (yearlong?), State (custom classifier)) | |
""" | |
with gr.Accordion("Area selection", open=opened): | |
with gr.Row(): | |
species_list_radio = gr.Radio( | |
[_AREA_ONE, _AREA_TWO, _AREA_THREE, _AREA_FOUR, _AREA_FIFE], | |
value="All regions", | |
label="Regions list", | |
info="List of all possible regions", | |
elem_classes="d-block", | |
) | |
# species_list_radio.change( | |
# show_species_choice, | |
# inputs=[species_list_radio], | |
# outputs=[ ], | |
# show_progress=False, | |
# ) | |
# | |
return species_list_radio | |
# | |
# Design main frame for analysis of a single file | |
# | |
def build_single_analysis_tab(): | |
with gr.Tab("Single file"): | |
audio_input = gr.Audio(type="filepath", label="file", elem_id="single_file_audio") | |
confidence_slider, sensitivity_slider, overlap_slider = sample_sliders(False) | |
species_list_radio = species_lists(False) | |
locale_radio = locale() | |
inputs = [ | |
audio_input, | |
confidence_slider, | |
sensitivity_slider, | |
overlap_slider, | |
species_list_radio, | |
locale_radio | |
] | |
output_dataframe = gr.Dataframe( | |
type="pandas", | |
headers=["Start (s)", "End (s)", "Scientific name", "Common name", "Confidence"], | |
elem_classes="mh-200", | |
) | |
single_file_analyze = gr.Button("Analyze") | |
single_file_analyze.click(runSingleFileAnalysis, | |
inputs=inputs, | |
outputs=output_dataframe, | |
) | |
def build_multi_analysis_tab(): | |
with gr.Tab("Multiple files"): | |
input_directory_state = gr.State() | |
output_directory_predict_state = gr.State() | |
with gr.Row(): | |
with gr.Column(): | |
select_directory_btn = gr.Button("Select directory (recursive)") | |
directory_input = gr.Matrix(interactive=False, elem_classes="mh-200", headers=["Subpath", "Length"]) | |
def select_directory_on_empty(): | |
res = select_directory() | |
return res if res[1] else [res[0], [["No files found"]]] | |
select_directory_btn.click( | |
select_directory_on_empty, outputs=[input_directory_state, directory_input], show_progress=True | |
) | |
with gr.Column(): | |
select_out_directory_btn = gr.Button("Select output directory.") | |
selected_out_textbox = gr.Textbox( | |
label="Output directory", | |
interactive=False, | |
placeholder="If not selected, the input directory will be used.", | |
) | |
def select_directory_wrapper(): | |
return (select_directory(collect_files=False),) * 2 | |
select_out_directory_btn.click( | |
select_directory_wrapper, | |
outputs=[output_directory_predict_state, selected_out_textbox], | |
show_progress=False, | |
) | |
confidence_slider, sensitivity_slider, overlap_slider = sample_sliders() | |
species_list_radio = species_lists(False) | |
output_type_radio = gr.Radio( | |
list(OUTPUT_TYPE_MAP.keys()), | |
value="Raven selection table", | |
label="Result type", | |
info="Specifies output format.", | |
) | |
with gr.Row(): | |
batch_size_number = gr.Number( | |
precision=1, label="Batch size", value=1, info="Number of samples to process at the same time." | |
) | |
threads_number = gr.Number(precision=1, label="Threads", value=4, info="Number of CPU threads.") | |
locale_radio = locale() | |
start_batch_analysis_btn = gr.Button("Analyze") | |
result_grid = gr.Matrix(headers=["File", "Execution"], elem_classes="mh-200") | |
inputs = [ | |
output_directory_predict_state, | |
confidence_slider, | |
sensitivity_slider, | |
overlap_slider, | |
species_list_radio, | |
locale_radio, | |
batch_size_number, | |
threads_number, | |
input_directory_state, | |
output_type_radio | |
] | |
start_batch_analysis_btn.click(runBatchAnalysis, inputs=inputs, outputs=result_grid) | |
def build_segments_tab(): | |
with gr.Tab("Segments"): | |
audio_directory_state = gr.State() | |
result_directory_state = gr.State() | |
output_directory_state = gr.State() | |
def select_directory_to_state_and_tb(): | |
return (select_directory(collect_files=False),) * 2 | |
with gr.Row(): | |
select_audio_directory_btn = gr.Button("Select audio directory (recursive)") | |
selected_audio_directory_tb = gr.Textbox(show_label=False, interactive=False) | |
select_audio_directory_btn.click( | |
select_directory_to_state_and_tb, | |
outputs=[selected_audio_directory_tb, audio_directory_state], | |
show_progress=False, | |
) | |
with gr.Row(): | |
select_result_directory_btn = gr.Button("Select result directory") | |
selected_result_directory_tb = gr.Textbox( | |
show_label=False, interactive=False, placeholder="Same as audio directory if not selected" | |
) | |
select_result_directory_btn.click( | |
select_directory_to_state_and_tb, | |
outputs=[result_directory_state, selected_result_directory_tb], | |
show_progress=False, | |
) | |
with gr.Row(): | |
select_output_directory_btn = gr.Button("Select output directory") | |
selected_output_directory_tb = gr.Textbox( | |
show_label=False, interactive=False, placeholder="Same as audio directory if not selected" | |
) | |
select_output_directory_btn.click( | |
select_directory_to_state_and_tb, | |
outputs=[selected_output_directory_tb, output_directory_state], | |
show_progress=False, | |
) | |
min_conf_slider = gr.Slider( | |
minimum=0.1, maximum=0.99, step=0.01, label="Minimum confidence", info="Minimum confidence threshold." | |
) | |
num_seq_number = gr.Number( | |
100, label="Max number of segments", info="Maximum number of randomly extracted segments per species." | |
) | |
seq_length_number = gr.Number(3.0, label="Sequence length", info="Length of extracted segments in seconds.") | |
threads_number = gr.Number(4, label="Threads", info="Number of CPU threads.") | |
extract_segments_btn = gr.Button("Extract segments") | |
result_grid = gr.Matrix(headers=["File", "Execution"], elem_classes="mh-200") | |
extract_segments_btn.click( | |
extract_segments, | |
inputs=[ | |
audio_directory_state, | |
result_directory_state, | |
output_directory_state, | |
min_conf_slider, | |
num_seq_number, | |
seq_length_number, | |
threads_number, | |
], | |
outputs=result_grid, | |
) | |
if __name__ == "__main__": | |
freeze_support() | |
with gr.Blocks( | |
css=r".d-block .wrap {display: block !important;} .mh-200 {max-height: 300px; overflow-y: auto !important;} footer {display: none !important;} #single_file_audio, #single_file_audio * {max-height: 81.6px; min-height: 0;}", | |
theme=gr.themes.Default(), | |
analytics_enabled=False, | |
) as demo: | |
build_single_analysis_tab() | |
# build_multi_analysis_tab() | |
# build_segments_tab() | |
demo.launch() | |
#url = demo.queue(api_open=False).launch(prevent_thread_lock=True, quiet=True)[1] | |
#_WINDOW = webview.create_window("BattyBirdNET-Analyzer", url.rstrip("/") + | |
# "?__theme=light", min_size=(1024, 768)) | |
# webview.start(private_mode=False) | |