Spaces:
Sleeping
Sleeping
File size: 20,815 Bytes
ae1e60f bf0c3af ae1e60f bf0c3af ae1e60f bf0c3af ae1e60f bf0c3af ae1e60f 2ee9bcb ae1e60f bf0c3af ae1e60f ef23faf 2ee9bcb ae1e60f ef23faf b39a587 ae1e60f ef23faf a99b5bd ad58c9d ef23faf ad58c9d ae1e60f 88f057d ae1e60f 88f057d ae1e60f bbf1ad6 ae1e60f bbf1ad6 05464d2 a77933f 7bc9abe 05464d2 7bc9abe 84b82d7 9d0b610 cb7b742 7bc9abe 05464d2 7bc9abe 05464d2 cb7b742 05464d2 cb7b742 05464d2 9d0b610 05464d2 9d0b610 05464d2 7bc9abe 9d0b610 7bc9abe 05464d2 7bc9abe 05464d2 9d0b610 05464d2 9d0b610 05464d2 9d0b610 05464d2 cb7b742 05464d2 93061c7 bbf1ad6 ae1e60f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
# Gradio Params Playground
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr
# Load default model as GPT2
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
# Define functions
global chosen_strategy
def generate(input_text, number_steps, number_beams, number_beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected):
chosen_strategy = strategy_selected
inputs = tokenizer(input_text, return_tensors="pt")
if chosen_strategy == "Sampling":
top_p_flag = top_p_box
top_k_flag = top_k_box
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
return_dict_in_generate=False,
temperature=temperature,
top_p=top_p if top_p_flag else None,
top_k=top_k if top_k_flag else None,
no_repeat_ngram_size = no_repeat_ngram_size,
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
output_scores=False,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
elif chosen_strategy == "Beam Search":
beam_temp_flag = beam_temperature
early_stop_flag = early_stopping
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
num_beams=number_beams,
num_return_sequences=min(num_return_sequences, number_beams),
return_dict_in_generate=False,
length_penalty=length_penalty,
temperature=temperature if beam_temp_flag else None,
no_repeat_ngram_size = no_repeat_ngram_size,
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
early_stopping = True if early_stop_flag else False,
output_scores=False,
do_sample=True if beam_temp_flag else False
)
beam_options_list = []
for i, beam_output in enumerate(outputs):
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
options = "\n\n - Option - \n".join(beam_options_list)
return ("Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
#print ("Option {}: {}\n".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
elif chosen_strategy == "Diversity Beam Search":
early_stop_flag = early_stopping
if number_beam_groups == 1:
number_beam_groups = 2
if number_beam_groups > number_beams:
number_beams = number_beam_groups
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
num_beams=number_beams,
num_beam_groups=number_beam_groups,
diversity_penalty=float(diversity_penalty),
num_return_sequences=min(num_return_sequences, number_beams),
return_dict_in_generate=False,
length_penalty=length_penalty,
no_repeat_ngram_size = no_repeat_ngram_size,
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
early_stopping = True if early_stop_flag else False,
output_scores=False,
)
beam_options_list = []
for i, beam_output in enumerate(outputs):
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
options = "\n\n ------ Option ------- \n".join(beam_options_list)
return ("Diversity Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
elif chosen_strategy == "Contrastive":
top_k_flag = top_k_box
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
return_dict_in_generate=False,
temperature=temperature,
penalty_alpha=penalty_alpha,
top_k=top_k if top_k_flag else None,
no_repeat_ngram_size = no_repeat_ngram_size,
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
output_scores=False,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
#--------ON SELECTING MODEL------------------------
def load_model(model_selected):
if model_selected == "gpt2":
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", pad_token_id=tokenizer.eos_token_id)
#print (model_selected + " loaded")
if model_selected == "Gemma 2":
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
#--------ON SELECT NO. OF RETURN SEQUENCES----------
def change_num_return_sequences(n_beams, num_return_sequences):
if (num_return_sequences > n_beams):
return gr.Slider(
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=n_beams)
return gr.Slider (
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=num_return_sequences)
#--------ON CHANGING NO OF BEAMS------------------
def popualate_beam_groups (n_beams):
global chosen_strategy
no_of_beams = n_beams
No_beam_group_list = [] #list for beam group selection
for y in range (2, no_of_beams+1):
if no_of_beams % y == 0: #perfectly divisible
No_beam_group_list.append (y) #add to list, use as list for beam group selection
if chosen_strategy == "Diversity Beam Search":
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=True),
num_return_sequences: gr.Slider(maximum=no_of_beams)
}
if chosen_strategy == "Beam Search":
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=False),
num_return_sequences: gr.Slider(maximum=no_of_beams)
}
#-----------ON SELECTING TOP P / TOP K--------------
def top_p_switch(input_p_box):
value = input_p_box
if value:
return {top_p: gr.Slider(visible = True)}
else:
return {top_p: gr.Slider(visible = False)}
def top_k_switch(input_k_box):
value = input_k_box
if value:
return {top_k: gr.Slider(visible = True)}
else:
return {top_k: gr.Slider(visible = False)}
#-----------ON SELECTING BEAM TEMPERATURE--------------
def beam_temp_switch (input):
value = input
if value:
return {temperature: gr.Slider (visible=True)}
else:
return {temperature: gr.Slider (visible=False)}
#-----------ON COOOSING STRATEGY: HIDE/DISPLAY PARAMS -----------
def select_strategy(input_strategy):
global chosen_strategy
chosen_strategy = input_strategy
if chosen_strategy == "Beam Search":
return {n_beams: gr.Slider(visible=True),
num_return_sequences: gr.Slider(visible=True),
beam_temperature: gr.Checkbox(visible=True),
early_stopping: gr.Checkbox(visible=True),
length_penalty: gr.Slider(visible=True),
beam_groups: gr.Dropdown(visible=False),
diversity_penalty: gr.Slider(visible=False),
temperature: gr.Slider (visible=False),
top_k: gr.Slider(visible=False),
top_p: gr.Slider(visible=False),
top_k_box: gr.Checkbox(visible = False),
top_p_box: gr.Checkbox(visible = False),
penalty_alpha: gr.Slider (visible=False)
}
if chosen_strategy == "Sampling":
if top_k_box == True:
{top_k: gr.Slider(visible = True)}
if top_p_box == True:
{top_p: gr.Slider(visible = True)}
return {
temperature: gr.Slider (visible=True),
top_p: gr.Slider(visible=False),
top_k: gr.Slider(visible=False),
n_beams: gr.Slider(visible=False),
beam_groups: gr.Dropdown(visible=False),
diversity_penalty: gr.Slider(visible=False),
num_return_sequences: gr.Slider(visible=False),
beam_temperature: gr.Checkbox(visible=False),
early_stopping: gr.Checkbox(visible=False),
length_penalty: gr.Slider(visible=False),
top_p_box: gr.Checkbox(visible = True, value=False),
top_k_box: gr.Checkbox(visible = True, value=False),
penalty_alpha: gr.Slider (visible=False)
}
if chosen_strategy == "Diversity Beam Search":
return {n_beams: gr.Slider(visible=True),
beam_groups: gr.Dropdown(visible=True),
diversity_penalty: gr.Slider(visible=True),
num_return_sequences: gr.Slider(visible=True),
length_penalty: gr.Slider(visible=True),
beam_temperature: gr.Checkbox(visible=False),
early_stopping: gr.Checkbox(visible=True),
temperature: gr.Slider (visible=False),
top_k: gr.Slider(visible=False),
top_p: gr.Slider(visible=False),
top_k_box: gr.Checkbox(visible = False),
top_p_box: gr.Checkbox(visible = False),
penalty_alpha: gr.Slider (visible=False),
}
if chosen_strategy == "Contrastive":
if top_k_box:
{top_k: gr.Slider(visible = True)}
return {
temperature: gr.Slider (visible=True),
penalty_alpha: gr.Slider (visible=True),
top_p: gr.Slider(visible=False),
#top_k: gr.Slider(visible = True) if top_k_box
#top_k: gr.Slider(visible=False),
n_beams: gr.Slider(visible=False),
beam_groups: gr.Dropdown(visible=False),
diversity_penalty: gr.Slider(visible=False),
num_return_sequences: gr.Slider(visible=False),
beam_temperature: gr.Checkbox(visible=False),
early_stopping: gr.Checkbox(visible=False),
length_penalty: gr.Slider(visible=False),
top_p_box: gr.Checkbox(visible = False),
top_k_box: gr.Checkbox(visible = True)
}
def clear():
print ("")
#------------------MAIN BLOCKS DISPLAY---------------
with gr.Blocks() as demo:
No_beam_group_list = [2]
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", pad_token_id=tokenizer.eos_token_id)
with gr.Row():
with gr.Column (scale=0, min_width=200) as Models_Strategy:
model_selected = gr.Radio (["gpt2", "Gemma 2"], label="ML Model", value="gpt2")
strategy_selected = gr.Radio (["Sampling", "Beam Search", "Diversity Beam Search","Contrastive"], label="Search strategy", value = "Sampling", interactive=True)
with gr.Column (scale=0, min_width=250) as Beam_Params:
n_steps = gr.Slider(
label="Number of steps/tokens", minimum=1, maximum=100, step=1, value=20
)
n_beams = gr.Slider(
label="Number of beams", minimum=2, maximum=100, step=1, value=4, visible=False
)
#----------------Dropdown-----------------
beam_groups = gr.Dropdown(No_beam_group_list, value=2, label="Beam groups", info="Divide beams into equal groups", visible=False
)
diversity_penalty = gr.Slider(
label="Group diversity penalty", minimum=0.1, maximum=2, step=0.1, value=0.8, visible=False
)
num_return_sequences = gr.Slider(
label="Number of return sequences", minimum=1, maximum=3, step=1, value=2, visible=False
)
temperature = gr.Slider(
label="Temperature", minimum=0.1, maximum=3, step=0.1, value=0.6, visible = True
)
top_k = gr.Slider(
label="Top_K", minimum=1, maximum=50, step=1, value=5, visible = False
)
top_p = gr.Slider(
label="Top_P", minimum=0.1, maximum=3, step=0.1, value=0.3, visible = False
)
penalty_alpha = gr.Slider(
label="Contrastive penalty α", minimum=0.1, maximum=2, step=0.1, value=0.6, visible=False
)
top_p_box = gr.Checkbox(label="Top P", info="Turn on Top P", visible = True, interactive=True)
top_k_box = gr.Checkbox(label="Top K", info="Turn on Top K", visible = True, interactive=True)
early_stopping = gr.Checkbox(label="Early stopping", info="Stop with heuristically chosen good result", visible = False, interactive=True)
beam_temperature = gr.Checkbox(label="Beam Temperature", info="Turn on sampling", visible = False, interactive=True)
with gr.Column(scale=0, min_width=200):
length_penalty = gr.Slider(
label="Length penalty", minimum=-3, maximum=3, step=0.5, value=0, info="'+' more, '-' less no. of words", visible = False, interactive=True
)
no_repeat_ngram_size = gr.Slider(
label="No repeat n-gram phrase size", minimum=0, maximum=8, step=1, value=4, info="Not to repeat 'n' words"
)
repetition_penalty = gr.Slider(
label="Repetition penalty", minimum=0, maximum=3, step=1, value=float(0), info="Prior context based penalty for unique text"
)
with gr.Column(scale=2):
text = gr.Textbox(
label="Prompt",
autoscroll=True,
value="It's a rainy day today"
)
out_markdown = gr.Textbox(label="Output", autoscroll=True)
#----------ON SELECTING/CHANGING: RETURN SEEQUENCES/NO OF BEAMS/BEAM GROUPS/TEMPERATURE--------
model_selected.change(
fn=load_model, inputs=[model_selected], outputs=[]
)
#num_return_sequences.change(
#fn=change_num_return_sequences, inputs=[n_beams,num_return_sequences], outputs=num_return_sequences
#)
n_beams.change(
fn=popualate_beam_groups, inputs=[n_beams], outputs=[beam_groups,num_return_sequences]
)
strategy_selected.change(fn=select_strategy, inputs=strategy_selected, outputs=[n_beams,beam_groups,length_penalty,diversity_penalty,num_return_sequences,temperature,early_stopping,beam_temperature,penalty_alpha,top_p,top_k,top_p_box,top_k_box])
beam_temperature.change (fn=beam_temp_switch, inputs=beam_temperature, outputs=temperature)
top_p_box.change (fn=top_p_switch, inputs=top_p_box, outputs=top_p)
top_k_box.change (fn=top_k_switch, inputs=top_k_box, outputs=top_k)
#-------------GENERATE BUTTON-------------------
with gr.Row():
with gr.Column (scale=0, min_width=200):
button = gr.Button("Generate")
button.click(
fn = generate,
inputs=[text, n_steps, n_beams, beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected],
outputs=[out_markdown]
)
with gr.Column (scale=0, min_width=200):
cleared = gr.Button ("Clear")
cleared.click (fn=clear, inputs=[], outputs=[out_markdown])
with gr.Row():
gr.Markdown (
"""
##
# About Params Playground
A space to tweak, test and learn generative model parameters for text output.
## Strategies:
Given some text as input, a decoder-only model hunts for the most popular continuation - whether the continuation makes sense or not - using various search strategies.
Example:
*Input: Today is a rainy day*
Option 1: , [probability score: 0.62]
Option 2: . [probability score: 0.21]
Option 3: ! [probability score: 0.73]
### **Greedy Search**:
Goes along the most well trodden path. Always picks up the next word/token carrying the highest probability score. Default for GPT2.
In this illustrative example, since "!" has the highest probability, a greedy strategy will output: Today is a rainy day!
### **Random Sampling**:
Picks up any random path or trail to walk on. Use ```do_sample=True```
*Temperature* - Increasing the temperature allows words with lesser probabilities to show up in the output. At Temp = 0, search becomes 'greedy' for words with high probabilities.
*Top_K*: Creates a small list of paths [tokens or words] to choose from. In the above example, if set to 2, only Option 1 and 3 - the two top ranking tokens in terms of probabilities, will be available for random sampling.
*Top_P*: Creates a small list of tokens based on the sum of their probability scores which should not exceed the Top P value. In the above example, if set to 0.80, only Option 3 will be available. If set to 1.5, Options 1 and 3 will be available. This metric can be used to make the output factually correct when the input is expecting facts like: "The capital of XYZ is [next token]"
When used with temperature: Reducing temperature makes the search greedy.
### **Simple Beam search**:
Selects the branches (beams) going towards other heavy laden branch of fruits, to find the heaviest set among the branches in all. Akin to greedy search, but finds the total heaviest or largest route.
If num_beams = 2, every branch will divide into the top two scoring tokens at each step, and so on till the search ends.
*Early Stopping*: Makes the search stop when a pre-determined criteria for ending the search is satisfied.
### **Diversity Beam search**:
Divided beams into groups of beams, and applies the diversity penalty. This makes the output more diverse and interesting.
*Group Diversity Penalty*: Used to instruct the next beam group to ignore the words/tokens already selected by previous groups.
### **Contrastive search**:
Uses the entire input context to create more interesting outputs.
*Penalty Alpha*: When α=0, search becomes greedy.
Refer: https://huggingface.co/blog/introducing-csearch
### **Other parameters**
- Length penalty: Used to force the model to meet the expected output length.
- Repetition penalty: Used to force the model to avoid repetition.
- No repeat n-gram size: Used to force the model not to repeat the n-size set of words. Avoid setting to 1, as this forces no two words to be identical.
**References**:
1. https://huggingface.co/blog/how-to-generate
2. https://huggingface.co/docs/transformers/generation_strategies#decoding-strategies
3. https://huggingface.co/docs/transformers/main/en/main_classes/text_generation
"""
)
demo.launch()
|