File size: 20,815 Bytes
ae1e60f
 
 
 
 
 
 
 
 
 
 
 
bf0c3af
ae1e60f
 
 
 
 
 
 
 
 
 
bf0c3af
ae1e60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf0c3af
ae1e60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf0c3af
ae1e60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee9bcb
 
ae1e60f
 
 
 
bf0c3af
ae1e60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef23faf
2ee9bcb
 
ae1e60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef23faf
b39a587
ae1e60f
ef23faf
 
a99b5bd
ad58c9d
ef23faf
 
ad58c9d
ae1e60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88f057d
 
ae1e60f
88f057d
 
 
 
 
 
 
 
 
 
ae1e60f
bbf1ad6
ae1e60f
bbf1ad6
 
05464d2
a77933f
7bc9abe
05464d2
7bc9abe
84b82d7
9d0b610
cb7b742
7bc9abe
05464d2
7bc9abe
05464d2
 
 
cb7b742
05464d2
cb7b742
05464d2
 
 
9d0b610
 
05464d2
 
 
 
9d0b610
 
05464d2
 
 
 
 
 
 
 
 
7bc9abe
9d0b610
 
7bc9abe
05464d2
7bc9abe
05464d2
 
 
9d0b610
 
05464d2
 
 
 
9d0b610
 
05464d2
 
 
 
 
 
9d0b610
05464d2
 
 
 
 
 
 
 
cb7b742
05464d2
 
 
 
 
 
 
 
 
93061c7
bbf1ad6
 
 
ae1e60f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

# Gradio Params Playground

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr


# Load default model as GPT2


tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")


# Define functions


global chosen_strategy

def generate(input_text, number_steps, number_beams, number_beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected):

    chosen_strategy = strategy_selected
    inputs = tokenizer(input_text, return_tensors="pt")
    
    if chosen_strategy == "Sampling":
        
        top_p_flag = top_p_box
        top_k_flag = top_k_box
        
        outputs = model.generate(
        **inputs,
        max_new_tokens=number_steps,
        return_dict_in_generate=False,
        temperature=temperature,
        top_p=top_p if top_p_flag else None,
        top_k=top_k if top_k_flag else None,
        no_repeat_ngram_size = no_repeat_ngram_size,
        repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
        output_scores=False,
        do_sample=True
            )
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    elif chosen_strategy == "Beam Search":
    
        beam_temp_flag = beam_temperature
        early_stop_flag = early_stopping
    
        inputs = tokenizer(input_text, return_tensors="pt")   
        outputs = model.generate(
            
            **inputs,
            max_new_tokens=number_steps,
            num_beams=number_beams,
            num_return_sequences=min(num_return_sequences, number_beams),
            return_dict_in_generate=False,
            length_penalty=length_penalty,
            temperature=temperature if beam_temp_flag else None,
            no_repeat_ngram_size = no_repeat_ngram_size,
            repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
            early_stopping = True if early_stop_flag else False,
            output_scores=False,
            do_sample=True if beam_temp_flag else False
            )
    
        beam_options_list = []
        for i, beam_output in enumerate(outputs):
            beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
        options = "\n\n - Option - \n".join(beam_options_list)
        return ("Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
            #print ("Option {}: {}\n".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
    
    elif chosen_strategy == "Diversity Beam Search":
        
        early_stop_flag = early_stopping
        
        if number_beam_groups == 1:
            number_beam_groups = 2
           
        
        if number_beam_groups > number_beams:
            number_beams = number_beam_groups
        
        inputs = tokenizer(input_text, return_tensors="pt")    
        outputs = model.generate(
            
            **inputs,
            max_new_tokens=number_steps,
            num_beams=number_beams,
            num_beam_groups=number_beam_groups,
            diversity_penalty=float(diversity_penalty),
            num_return_sequences=min(num_return_sequences, number_beams),
            return_dict_in_generate=False,
            length_penalty=length_penalty,
            no_repeat_ngram_size = no_repeat_ngram_size,
            repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
            early_stopping = True if early_stop_flag else False,
            output_scores=False,
            )
    
        beam_options_list = []
        for i, beam_output in enumerate(outputs):
            beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
        options = "\n\n ------ Option ------- \n".join(beam_options_list)
        return ("Diversity Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)

    elif chosen_strategy == "Contrastive":
        
        top_k_flag = top_k_box
        
        outputs = model.generate(
        **inputs,
        max_new_tokens=number_steps,
        return_dict_in_generate=False,
        temperature=temperature,
        penalty_alpha=penalty_alpha,
        top_k=top_k if top_k_flag else None,
        no_repeat_ngram_size = no_repeat_ngram_size,
        repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
        output_scores=False,
        do_sample=True
            )
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    
#--------ON SELECTING MODEL------------------------

def load_model(model_selected):
    
    if model_selected == "gpt2":
        tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
        model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", pad_token_id=tokenizer.eos_token_id)
        #print (model_selected + " loaded")
    
    if model_selected == "Gemma 2":
        tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
        model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")



#--------ON SELECT NO. OF RETURN SEQUENCES----------

def change_num_return_sequences(n_beams, num_return_sequences):
    
    if (num_return_sequences > n_beams):
        return gr.Slider(
            label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=n_beams)
    
    return gr.Slider (
            label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=num_return_sequences)

#--------ON CHANGING NO OF BEAMS------------------

def popualate_beam_groups (n_beams):
    
    global chosen_strategy
    no_of_beams = n_beams
    No_beam_group_list = [] #list for beam group selection
    for y in range (2, no_of_beams+1):
        if no_of_beams % y == 0: #perfectly divisible
            No_beam_group_list.append (y) #add to list, use as list for beam group selection

    if chosen_strategy == "Diversity Beam Search":
        return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=True),
                num_return_sequences: gr.Slider(maximum=no_of_beams) 
               }
    if chosen_strategy == "Beam Search":
        return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=False),
                num_return_sequences: gr.Slider(maximum=no_of_beams) 
               }

#-----------ON SELECTING TOP P / TOP K--------------

def top_p_switch(input_p_box):
    value = input_p_box
    if value:
        return {top_p: gr.Slider(visible = True)}
    else:
        return {top_p: gr.Slider(visible = False)}

    
def top_k_switch(input_k_box):
    value = input_k_box
    if value:
        return {top_k: gr.Slider(visible = True)}
    else:
        return {top_k: gr.Slider(visible = False)}


#-----------ON SELECTING BEAM TEMPERATURE--------------

def beam_temp_switch (input):
    value = input
    if value:
        return {temperature: gr.Slider (visible=True)}
    else:
        return {temperature: gr.Slider (visible=False)}


#-----------ON COOOSING STRATEGY: HIDE/DISPLAY PARAMS -----------
    
def select_strategy(input_strategy):
    
    global chosen_strategy
    chosen_strategy = input_strategy
    
    if chosen_strategy == "Beam Search":
        return {n_beams: gr.Slider(visible=True),
                num_return_sequences: gr.Slider(visible=True),
                beam_temperature: gr.Checkbox(visible=True),
                early_stopping: gr.Checkbox(visible=True),
                length_penalty: gr.Slider(visible=True),
                beam_groups: gr.Dropdown(visible=False),
                diversity_penalty: gr.Slider(visible=False),
                temperature: gr.Slider (visible=False),
                top_k: gr.Slider(visible=False),
                top_p: gr.Slider(visible=False),
                top_k_box: gr.Checkbox(visible = False),
                top_p_box: gr.Checkbox(visible = False),
                penalty_alpha: gr.Slider (visible=False)
                
               }
    if chosen_strategy == "Sampling":
        if top_k_box == True:
            {top_k: gr.Slider(visible = True)}
        if top_p_box == True:
            {top_p: gr.Slider(visible = True)}

        return {
            temperature: gr.Slider (visible=True),
            top_p: gr.Slider(visible=False),
            top_k: gr.Slider(visible=False),
            n_beams: gr.Slider(visible=False),
            beam_groups: gr.Dropdown(visible=False),
            diversity_penalty: gr.Slider(visible=False),
            num_return_sequences: gr.Slider(visible=False),
            beam_temperature: gr.Checkbox(visible=False),
            early_stopping: gr.Checkbox(visible=False),
            length_penalty: gr.Slider(visible=False),
            top_p_box: gr.Checkbox(visible = True, value=False),
            top_k_box: gr.Checkbox(visible = True, value=False),
            penalty_alpha: gr.Slider (visible=False)
                }
    if chosen_strategy == "Diversity Beam Search":   
        
        return {n_beams: gr.Slider(visible=True),
                beam_groups: gr.Dropdown(visible=True),
                diversity_penalty: gr.Slider(visible=True),
                num_return_sequences: gr.Slider(visible=True),
                length_penalty: gr.Slider(visible=True),
                beam_temperature: gr.Checkbox(visible=False),
                early_stopping: gr.Checkbox(visible=True),
                temperature: gr.Slider (visible=False),
                top_k: gr.Slider(visible=False),
                top_p: gr.Slider(visible=False),
                top_k_box: gr.Checkbox(visible = False),
                top_p_box: gr.Checkbox(visible = False),
                penalty_alpha: gr.Slider (visible=False),
               }
    
    if chosen_strategy == "Contrastive":
        if top_k_box:
            {top_k: gr.Slider(visible = True)} 
    
        return {
            temperature: gr.Slider (visible=True),
            penalty_alpha: gr.Slider (visible=True),
            top_p: gr.Slider(visible=False),
            #top_k: gr.Slider(visible = True) if top_k_box
            #top_k: gr.Slider(visible=False),
            n_beams: gr.Slider(visible=False),
            beam_groups: gr.Dropdown(visible=False),
            diversity_penalty: gr.Slider(visible=False),
            num_return_sequences: gr.Slider(visible=False),
            beam_temperature: gr.Checkbox(visible=False),
            early_stopping: gr.Checkbox(visible=False),
            length_penalty: gr.Slider(visible=False),
            top_p_box: gr.Checkbox(visible = False),
            top_k_box: gr.Checkbox(visible = True)
                }

def clear():
    print ("")


#------------------MAIN BLOCKS DISPLAY---------------

with gr.Blocks() as demo:
    
    No_beam_group_list = [2]
        
    tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
    model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", pad_token_id=tokenizer.eos_token_id)

    
    with gr.Row():
        
        with gr.Column (scale=0, min_width=200) as Models_Strategy:
            
            model_selected = gr.Radio (["gpt2", "Gemma 2"], label="ML Model", value="gpt2")
            strategy_selected = gr.Radio (["Sampling", "Beam Search", "Diversity Beam Search","Contrastive"], label="Search strategy", value = "Sampling", interactive=True)
            
        
        with gr.Column (scale=0, min_width=250) as Beam_Params:
            n_steps = gr.Slider(
                label="Number of steps/tokens", minimum=1, maximum=100, step=1, value=20 
            )
            n_beams = gr.Slider(
                label="Number of beams", minimum=2, maximum=100, step=1, value=4, visible=False
            )
        
            #----------------Dropdown-----------------
            
            beam_groups = gr.Dropdown(No_beam_group_list, value=2, label="Beam groups", info="Divide beams into equal groups", visible=False
            )
            
            diversity_penalty = gr.Slider(
                label="Group diversity penalty", minimum=0.1, maximum=2, step=0.1, value=0.8, visible=False
            )

            num_return_sequences = gr.Slider(
                label="Number of return sequences", minimum=1, maximum=3, step=1, value=2, visible=False
            )    
            temperature = gr.Slider(
                label="Temperature", minimum=0.1, maximum=3, step=0.1, value=0.6, visible = True
            )
            
            top_k = gr.Slider(
                label="Top_K", minimum=1, maximum=50, step=1, value=5, visible = False
            )
            top_p = gr.Slider(
                label="Top_P", minimum=0.1, maximum=3, step=0.1, value=0.3, visible = False
            )
            
            penalty_alpha = gr.Slider(
                label="Contrastive penalty α", minimum=0.1, maximum=2, step=0.1, value=0.6, visible=False
            )
            
            top_p_box = gr.Checkbox(label="Top P", info="Turn on Top P", visible = True, interactive=True)
            top_k_box = gr.Checkbox(label="Top K", info="Turn on Top K", visible = True, interactive=True)
            
            
            early_stopping = gr.Checkbox(label="Early stopping", info="Stop with heuristically chosen good result", visible = False, interactive=True)
            beam_temperature = gr.Checkbox(label="Beam Temperature", info="Turn on sampling", visible = False, interactive=True)
        
        with gr.Column(scale=0, min_width=200):
            
            length_penalty = gr.Slider(
                label="Length penalty", minimum=-3, maximum=3, step=0.5, value=0, info="'+' more, '-' less no. of words", visible = False, interactive=True
            )
            
            no_repeat_ngram_size = gr.Slider(
                label="No repeat n-gram phrase size", minimum=0, maximum=8, step=1, value=4, info="Not to repeat 'n' words"
            )
            repetition_penalty = gr.Slider(
                label="Repetition penalty", minimum=0, maximum=3, step=1, value=float(0), info="Prior context based penalty for unique text"
            )

        with gr.Column(scale=2):
            
            text = gr.Textbox(
            label="Prompt",
            autoscroll=True,
            value="It's a rainy day today"
            )

            out_markdown = gr.Textbox(label="Output", autoscroll=True)
    

#----------ON SELECTING/CHANGING: RETURN SEEQUENCES/NO OF BEAMS/BEAM GROUPS/TEMPERATURE--------
            
    model_selected.change(
        fn=load_model, inputs=[model_selected], outputs=[]
    )
    
    #num_return_sequences.change(
            #fn=change_num_return_sequences, inputs=[n_beams,num_return_sequences], outputs=num_return_sequences
    #)
    
    n_beams.change(
            fn=popualate_beam_groups, inputs=[n_beams], outputs=[beam_groups,num_return_sequences]
    )
    
    strategy_selected.change(fn=select_strategy, inputs=strategy_selected, outputs=[n_beams,beam_groups,length_penalty,diversity_penalty,num_return_sequences,temperature,early_stopping,beam_temperature,penalty_alpha,top_p,top_k,top_p_box,top_k_box])
    
    beam_temperature.change (fn=beam_temp_switch, inputs=beam_temperature, outputs=temperature)
    
    top_p_box.change (fn=top_p_switch, inputs=top_p_box, outputs=top_p)
    
    top_k_box.change (fn=top_k_switch, inputs=top_k_box, outputs=top_k)


    #-------------GENERATE BUTTON-------------------
    
    with gr.Row():
        with gr.Column (scale=0, min_width=200):
    
            button = gr.Button("Generate")  
            
            button.click(
                fn = generate,
                inputs=[text, n_steps, n_beams, beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected],
                outputs=[out_markdown]
            )
        with gr.Column (scale=0, min_width=200):    
            cleared = gr.Button ("Clear")
            cleared.click (fn=clear, inputs=[], outputs=[out_markdown])

    with gr.Row():

        gr.Markdown (
            """
            ##
            # About Params Playground
            
            A space to tweak, test and learn generative model parameters for text output.
            
            ## Strategies:
        
            Given some text as input, a decoder-only model hunts for the most popular continuation - whether the continuation makes sense or not - using various search strategies.
            
            Example:
            
            *Input: Today is a rainy day*
            
            Option 1: , [probability score: 0.62]
            
            Option 2: . [probability score: 0.21]
            
            Option 3: ! [probability score: 0.73]
            
            
            ### **Greedy Search**: 
            Goes along the most well trodden path. Always picks up the next word/token carrying the highest probability score. Default for GPT2.
            
            In this illustrative example, since "!" has the highest probability, a greedy strategy will output: Today is a rainy day!
            
            
            ### **Random Sampling**: 
            Picks up any random path or trail to walk on. Use ```do_sample=True```
            
            *Temperature* - Increasing the temperature allows words with lesser probabilities to show up in the output. At Temp = 0, search becomes 'greedy' for words with high probabilities.
            
            *Top_K*: Creates a small list of paths [tokens or words] to choose  from. In the above example, if set to 2, only Option 1 and 3 - the two top ranking tokens in terms of probabilities, will be available for random sampling.
            
            *Top_P*: Creates a small list of tokens based on the sum of their probability scores which should not exceed the Top P value. In the above example, if set to 0.80, only Option 3 will be available. If set to 1.5, Options 1 and 3 will be available. This metric can be used to make the output factually correct when the input is expecting facts like: "The capital of XYZ is [next token]"
            
            When used with temperature: Reducing temperature makes the search greedy.
                     
            
            ### **Simple Beam search**: 
            Selects the branches (beams) going towards other heavy laden branch of fruits, to find the heaviest set among the branches in all. Akin to greedy search, but finds the total heaviest or largest route.
            
            If num_beams = 2, every branch will divide into the top two scoring tokens at each step, and so on till the search ends.
            
            *Early Stopping*: Makes the search stop when a pre-determined criteria for ending the search is satisfied.
                      
            
            ### **Diversity Beam search**: 
            Divided beams into groups of beams, and applies the diversity penalty. This makes the output more diverse and interesting. 
            
            *Group Diversity Penalty*: Used to instruct the next beam group to ignore the words/tokens already selected by previous groups.
                        
            
            ### **Contrastive search**: 
            Uses the entire input context to create more interesting outputs.
            
            *Penalty Alpha*: When α=0, search becomes greedy.
            
            Refer: https://huggingface.co/blog/introducing-csearch
                        
            
            ### **Other parameters**
                        
            - Length penalty: Used to force the model to meet the expected output length.
                      
            - Repetition penalty: Used to force the model to avoid repetition.
                        
            - No repeat n-gram size: Used to force the model not to repeat the n-size set of words. Avoid setting to 1, as this forces no two words to be identical.
            
            
            **References**: 
            
            1. https://huggingface.co/blog/how-to-generate
            
            2. https://huggingface.co/docs/transformers/generation_strategies#decoding-strategies
            
            3. https://huggingface.co/docs/transformers/main/en/main_classes/text_generation

            

            
            """
            
        )

demo.launch()