Spaces:
Sleeping
Sleeping
File size: 10,351 Bytes
6f0136b af440c4 6f0136b af440c4 05b8e53 af440c4 6f0136b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
# Define model classes (same as before)
class SimpleGate(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=-1)
return x1 * x2
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels):
super(ASPP, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, padding=6, dilation=6, bias=False)
self.conv3 = nn.Conv2d(in_channels, out_channels, 3, padding=12, dilation=12, bias=False)
self.conv4 = nn.Conv2d(in_channels, out_channels, 3, padding=18, dilation=18, bias=False)
self.pool = nn.AdaptiveAvgPool2d(1)
self.conv5 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
self.conv_out = nn.Conv2d(out_channels * 5, out_channels, 1, bias=False)
self.norm = nn.LayerNorm(out_channels)
self.act = nn.SiLU()
def forward(self, x):
size = x.shape[-2:]
feat1 = self.conv1(x)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = F.interpolate(self.conv5(self.pool(x)), size=size, mode='bilinear', align_corners=False)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
out = self.conv_out(out)
out = out.permute(0, 2, 3, 1) # Change to (B, H, W, C)
out = self.norm(out)
out = out.permute(0, 3, 1, 2) # Change back to (B, C, H, W)
return self.act(out)
class ChannelwiseSelfAttention(nn.Module):
def __init__(self, dim):
super(ChannelwiseSelfAttention, self).__init__()
self.dim = dim
self.query_conv = nn.Linear(dim, dim)
self.key_conv = nn.Linear(dim, dim)
self.value_conv = nn.Linear(dim, dim)
self.scale = dim ** -0.5
self.pos_embedding = nn.Parameter(torch.randn(1, 1, 1, dim))
def forward(self, x):
# x: (B, H, W, C)
B, H, W, C = x.shape
x = x + self.pos_embedding # Positional embedding
x = x.view(B, H * W, C) # Reshape to (B, N, C)
# Linear projections
q = self.query_conv(x) # (B, N, C)
k = self.key_conv(x) # (B, N, C)
v = self.value_conv(x) # (B, N, C)
# Compute attention over channels at each spatial location
q = q.view(B, H * W, 1, C) # (B, N, 1, C)
k = k.view(B, H * W, C, 1) # (B, N, C, 1)
attn = torch.matmul(q, k).squeeze(2) * self.scale # (B, N, C)
attn = attn.softmax(dim=-1) # Softmax over channels
# Apply attention to values
out = attn * v # Element-wise multiplication
out = out.view(B, H, W, C) # Reshape back to (B, H, W, C)
return out
class EnhancedSS2D(nn.Module):
def __init__(self, d_model, d_state=16, d_conv=3, expand=2., dt_rank=64, dt_min=0.001, dt_max=0.1, dt_init="random", dt_scale=1.0):
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.expand = expand
self.d_inner = int(self.expand * self.d_model) # self.d_inner = 2 * d_model
self.dt_rank = dt_rank
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2)
self.conv2d = nn.Conv2d(self.d_inner, self.d_inner, kernel_size=d_conv, padding=(d_conv - 1) // 2, groups=self.d_inner)
self.act = nn.SiLU()
self.x_proj = nn.Linear(self.d_inner, self.d_inner * 2)
self.dt_proj = nn.Linear(self.d_inner, self.d_inner)
self.out_norm = nn.LayerNorm(self.d_inner)
# Update here
self.out_proj = nn.Linear(self.d_inner // 2, d_model)
# New components
self.simple_gate = SimpleGate()
self.aspp = ASPP(d_model, d_model)
self.channel_attn = ChannelwiseSelfAttention(d_model)
def forward(self, x):
B, H, W, C = x.shape
# Apply ASPP
x_aspp = self.aspp(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
# Original SS2D operations
x = self.in_proj(x)
x, z = x.chunk(2, dim=-1)
x = x.permute(0, 3, 1, 2)
x = self.conv2d(x)
x = x.permute(0, 2, 3, 1)
x = self.act(x)
y = self.selective_scan(x)
y = self.out_norm(y)
y = y * F.silu(z)
# Apply SimpleGate
y = self.simple_gate(y)
# Apply Channel-wise Self-Attention
y = self.channel_attn(y)
# Combine with ASPP output
y = y + x_aspp
out = self.out_proj(y)
return out
def selective_scan(self, x):
B, H, W, C = x.shape
x_flat = x.reshape(B, H*W, C)
x_dbl = self.x_proj(x_flat)
x_dbl = x_dbl.view(B, H, W, -1)
dt, x_proj = x_dbl.chunk(2, dim=-1)
dt = F.softplus(self.dt_proj(dt))
y = x * torch.sigmoid(dt) + x_proj * torch.tanh(x_proj)
return y
class EnhancedVSSBlock(nn.Module):
def __init__(self, d_model, d_state=16):
super().__init__()
self.ln_1 = nn.LayerNorm(d_model)
self.ss2d = EnhancedSS2D(d_model, d_state)
self.ln_2 = nn.LayerNorm(d_model)
self.conv_blk = nn.Sequential(
nn.Conv2d(d_model, d_model, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(d_model, d_model, kernel_size=3, padding=1)
)
def forward(self, x):
residual = x
x = self.ln_1(x)
x = residual + self.ss2d(x)
residual = x
x = self.ln_2(x)
x = x.permute(0, 3, 1, 2)
x = self.conv_blk(x)
x = x.permute(0, 2, 3, 1)
x = residual + x
return x
class MambaIRShadowRemoval(nn.Module):
def __init__(self, img_channel=3, width=32, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], d_state=64):
super().__init__()
self.intro = nn.Conv2d(img_channel, width, kernel_size=3, padding=1, stride=1, groups=1, bias=True)
self.ending = nn.Conv2d(width, img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True)
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(*[EnhancedVSSBlock(chan, d_state) for _ in range(num)])
)
self.downs.append(nn.Conv2d(chan, 2*chan, 2, 2))
chan = chan * 2
self.middle_blks = nn.Sequential(
*[EnhancedVSSBlock(chan, d_state) for _ in range(middle_blk_num)]
)
for num in dec_blk_nums:
self.ups.append(nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
))
chan = chan // 2
self.decoders.append(
nn.Sequential(*[EnhancedVSSBlock(chan, d_state) for _ in range(num)])
)
self.padder_size = 2 ** len(self.encoders)
def forward(self, inp):
B, C, H, W = inp.shape
inp = self.check_image_size(inp)
x = self.intro(inp)
x = x.permute(0, 2, 3, 1)
encs = []
for encoder, down in zip(self.encoders, self.downs):
x = encoder(x)
encs.append(x)
x = x.permute(0, 3, 1, 2)
x = down(x)
x = x.permute(0, 2, 3, 1)
x = self.middle_blks(x)
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
x = x.permute(0, 3, 1, 2)
x = up(x)
x = x.permute(0, 2, 3, 1)
x = x + enc_skip
x = decoder(x)
x = x.permute(0, 3, 1, 2)
x = self.ending(x)
x = x + inp
return x[:, :, :H, :W]
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
return x
# Load the model with weights
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define function to load model with specified weights
def load_model(weights_path):
model = MambaIRShadowRemoval(img_channel=3, width=32, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], d_state=64)
model.load_state_dict(torch.load(weights_path, map_location=device))
model.to(device)
model.eval()
return model
# Preload models for ISTD+ and SRD
models = {
"ISTD+": load_model("ISTD+.pth"),
"SRD": load_model("SRD.pth")
}
# Define transformation
transform = transforms.Compose([
transforms.ToTensor(),
])
# Define function to perform shadow removal
def remove_shadow(image, dataset):
model = models[dataset] # Select the appropriate model based on dataset choice
input_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
output_tensor = model(input_tensor)
output_image = transforms.ToPILImage()(output_tensor.squeeze(0).cpu())
return output_image
# Define example paths for ISTD+ and SRD
examples = [
["ISTD+.png", "ISTD+"],
["SRD.jpg", "SRD"]
]
# Gradio Interface with dropdown and examples
with gr.Blocks() as iface:
gr.Markdown("## Shadow Removal Model")
gr.Markdown("Upload an image to remove shadows using the trained model. Choose the dataset to load the corresponding weights and example images.")
with gr.Row():
dataset_choice = gr.Dropdown(["ISTD+", "SRD"], label="Choose Dataset", value="ISTD+")
example_image = gr.Image(type="pil", label="Input Image")
output_image = gr.Image(type="pil", label="Output Image")
# Display examples and map them to dataset and images
gr.Examples(
examples=examples,
inputs=[example_image, dataset_choice],
label="Examples",
)
submit_btn = gr.Button("Submit")
submit_btn.click(remove_shadow, inputs=[example_image, dataset_choice], outputs=output_image)
iface.launch()
|