File size: 6,019 Bytes
1a65f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import torch
import os
import numpy as np
import soundfile as sf
import speech_recognition as sr
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from gtts import gTTS
import traceback
import pyttsx3  # For better TTS

# Initialize TTS engine
tts_engine = pyttsx3.init()

def save_audio_file(audio_data):
    """
    Save audio data to a temporary file
    
    Args:
        audio_data (tuple): Tuple containing sample rate and numpy array
    
    Returns:
        str: Path to saved audio file
    """
    try:
        os.makedirs('temp', exist_ok=True)
        sample_rate, audio_array = audio_data
        file_path = os.path.join('temp', 'input_audio.wav')
        sf.write(file_path, audio_array, sample_rate)
        return file_path
    except Exception as e:
        print(f"Error saving audio file: {e}")
        return None

def safe_speech_to_text(audio_data):
    """
    Safe speech-to-text conversion with comprehensive error handling
    
    Args:
        audio_data (tuple): Tuple containing sample rate and numpy array
    
    Returns:
        str: Recognized text or error message
    """
    recognizer = sr.Recognizer()
    
    try:
        audio_path = save_audio_file(audio_data)
        if not audio_path:
            return "Error: Could not save audio file"
        
        file_size = os.path.getsize(audio_path)
        if file_size > 10 * 1024 * 1024:  # 10MB limit
            return "Audio file is too large. Please upload a file smaller than 10MB."
        
        with sr.AudioFile(audio_path) as source:
            recognizer.adjust_for_ambient_noise(source, duration=0.5)
            audio = recognizer.record(source)
        
        try:
            text = recognizer.recognize_google(audio)
            return text
        except sr.UnknownValueError:
            try:
                text = recognizer.recognize_sphinx(audio)
                return text
            except Exception as sphinx_error:
                return f"Speech recognition failed: {sphinx_error}"
    
    except Exception as e:
        error_trace = traceback.format_exc()
        return f"Unexpected error during audio processing: {e}\n{error_trace}"

def text_to_speech(text):
    """Convert text to speech with error handling"""
    try:
        os.makedirs('temp', exist_ok=True)
        tts_engine.save_to_file(text, os.path.join('temp', "response.mp3"))
        tts_engine.runAndWait()
        return os.path.join('temp', "response.mp3")
    except Exception as e:
        print(f"Text-to-speech conversion error: {e}")
        return None

def generate_educational_response(question):
    """Generate educational response with fallback"""
    try:
        model_name = "distilgpt2"
        device = "cuda" if torch.cuda.is_available() else "cpu"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
        nlp_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
        prompt = f"Explain in a simple, educational way: {question}"
        response = nlp_pipeline(prompt, max_length=200, num_return_sequences=1)
        return response[0]['generated_text']
    except Exception as e:
        error_trace = traceback.format_exc()
        return f"Error generating response: {e}\n{error_trace}"

def process_input(audio):
    """
    Comprehensive input processing with robust error handling
    
    Args:
        audio (tuple): Gradio audio upload data
    
    Returns:
        Tuple of processing results or error messages
    """
    try:
        if audio is None:
            return (
                "No audio file uploaded", 
                "Please upload an audio file", 
                None, 
                "No Braille conversion", 
                "Error: No input provided"
            )
        
        text_input = safe_speech_to_text(audio)
        
        if not text_input or len(text_input) < 3:
            return (
                "Audio recognition failed", 
                "Could not understand the audio. Please try again.", 
                None, 
                "No Braille conversion", 
                "Error: Unable to recognize speech"
            )
        
        response_text = generate_educational_response(text_input)
        audio_output_path = text_to_speech(response_text)
        braille_text = ' '.join([f"⠈{char}" for char in response_text])
        learning_guide = (
            "🌟 Learning Guide 🌟\n"
            f"Original Question: {text_input}\n\n"
            "Tip: Each Braille character is formed by a unique combination of raised dots.\n"
            "Practice tracing the dots to understand the pattern."
        )
        
        return (
            text_input,          # Recognized speech
            response_text,       # Educational response
            audio_output_path,   # Audio response path
            braille_text,        # Basic Braille text
            learning_guide       # Simple learning guide
        )
    
    except Exception as e:
        error_trace = traceback.format_exc()
        return (
            "Processing Error", 
            f"An unexpected error occurred: {e}", 
            None, 
            "Error in Braille conversion", 
            f"Detailed Error:\n{error_trace}"
        )

# Gradio Interface with Error Handling
interface = gr.Interface(
    fn=process_input,
    inputs=gr.Audio(label="Upload Audio (MP3/WAV)", type="numpy"),
    outputs=[
        gr.Textbox(label="Recognized Question"),
        gr.Textbox(label="Educational Response"),
        gr.Audio(label="Response Audio"),
        gr.Textbox(label="Braille Representation"),
        gr.Textbox(label="Learning Guide", lines=8)
    ],
    title="🌈 Accessible Learning Companion",
    description="Upload an audio file to get an educational explanation, audio response, and Braille representation."
)

# Launch the interface
interface.launch(debug=True)