File size: 14,405 Bytes
c102038
823b9f5
 
 
 
 
 
 
e34a2a6
c102038
823b9f5
e34a2a6
 
823b9f5
 
 
 
 
e34a2a6
823b9f5
e34a2a6
 
823b9f5
 
e34a2a6
 
 
 
823b9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34a2a6
823b9f5
 
 
e34a2a6
 
 
 
 
 
 
 
 
823b9f5
e34a2a6
 
 
 
 
 
823b9f5
 
 
 
 
 
c102038
e34a2a6
823b9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
e34a2a6
823b9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c102038
 
 
 
 
 
 
 
823b9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34a2a6
823b9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34a2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823b9f5
e34a2a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823b9f5
 
e34a2a6
823b9f5
 
 
e34a2a6
823b9f5
 
 
 
e34a2a6
 
 
 
 
 
823b9f5
e34a2a6
 
 
 
 
 
823b9f5
 
e34a2a6
823b9f5
 
e34a2a6
823b9f5
 
 
e34a2a6
823b9f5
 
 
 
 
e34a2a6
823b9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34a2a6
823b9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34a2a6
 
 
 
 
 
 
 
823b9f5
 
e34a2a6
823b9f5
 
 
 
 
 
e34a2a6
823b9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34a2a6
823b9f5
 
 
 
 
 
e34a2a6
 
823b9f5
 
 
 
e34a2a6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import boto3
from langchain_community.vectorstores import Qdrant
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.runnables.base import RunnableLambda
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import StructuredTool
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_core.messages import AIMessage
from typing import List, Optional
from chat_utils import get_init_modules, SYSTEM_PROMPT, SYSTEM_PROMPT_LOOP, ContextInput, Answer, get_vectorDB_module
from langchain_core.documents.base import Document
from langchain_core.runnables import ConfigurableField
import qdrant_client.models as rest

class EurLexChat:
    def __init__(self, config: dict):
        self.config = config
        self.max_history_messages = self.config["max_history_messages"]
        self.vectorDB_class = self.config['vectorDB']['class']
        self.use_functions = (
            'use_context_function' in config["llm"] and
            config["llm"]["use_context_function"] and
            config["llm"]["class"] == "ChatOpenAI")

        self.embedder, self.llm, self.chatDB_class, self.retriever, retriever_chain = get_init_modules(
            config)


        self.max_context_size = config["llm"]["max_context_size"]

        self.prompt = ChatPromptTemplate.from_messages([
            ("system", SYSTEM_PROMPT),
            MessagesPlaceholder(variable_name="history"),
            ("human", "{question}"),
        ])

        self.prompt_loop = ChatPromptTemplate.from_messages([
            ("system", SYSTEM_PROMPT_LOOP),
            ("human", "History: {history}. Message:"),
        ])

        self.chain_loop_answer = ( self.prompt_loop | self.llm )

        if self.use_functions: 

            GET_CONTEXT_TOOL = StructuredTool.from_function(
                func=self.get_context,
                name="get_context",
                description="To be used whenever the provided context is empty or the user changes the topic of the conversation and you need the context for the topic. " +
                "This function must be called only when is strictly necessary. " +
                "This function must not be called if you already have in the context the information to answer the user. ",
                args_schema=ContextInput
            )

            self.llm_with_functions = self.llm.bind(
                tools=[convert_to_openai_tool(GET_CONTEXT_TOOL)]
            )

            chain = ( 
                    self.prompt | 
                    RunnableLambda(self._resize_history) |
                    self.llm_with_functions
                    )
        else:
            chain = (
                    self.prompt | 
                    RunnableLambda(self._resize_history) |
                    self.llm
                    )

        self.chain_with_history = RunnableWithMessageHistory(
            chain,
            self.get_chat_history,
            input_messages_key="question",
            history_messages_key="history",
        )

        self.relevant_documents_pipeline = (retriever_chain | self._parse_documents)

    def _resize_history(self, input_dict):
        """
        Resize the message history.

        Args:
            input_dict: The llm input containing the message history.

        Returns:
            dict: The resized version of the input_dict.
        """

        messages = input_dict.messages
        if (len(messages) - 2) > self.max_history_messages:
            messages = [messages[0]] + messages[-(self.max_history_messages + 1):]
            input_dict.messages = messages
        return input_dict

    def get_chat_history(self, session_id: str):
        """
        Retrieve chat history instance for a specific session ID.

        Args:
            session_id (str): The unique identifier for the session.

        Returns:
            Chat history object: An instance of the appropriate chat history class.
        """

        kwargs = self.config["chatDB"]["kwargs"]
        if self.config["chatDB"]["class"] == 'FileChatMessageHistory':
            file_path = f"{kwargs['output_path']}/{session_id}.json"
            return self.chatDB_class(file_path=file_path)
        elif self.config["chatDB"]["class"] == 'DynamoDBChatMessageHistory':
            table_name = kwargs["table_name"]
            session = boto3.Session(aws_access_key_id=kwargs["aws_access_key_id"],
                                    aws_secret_access_key=kwargs["aws_secret_access_key"],
                                    region_name='eu-west-1')
            return self.chatDB_class(session_id=session_id,
                                     table_name=table_name,
                                     boto3_session=session)
        else:
            return self.chatDB_class(session_id=session_id, **kwargs)

    def _parse_documents(self, docs: List[Document]) -> List[dict]:
        """
        Parse a list of documents into a standardized format.

        Args:
            docs (List[Document]): A list of documents to parse.

        Returns:
            List[dict]: A list of dictionaries, each containing parsed information from the input documents.
        """

        parsed_documents = []

        for doc in docs:
            parsed_documents.append({
                'text': doc.page_content,
                'source': doc.metadata["source"],
                'celex': doc.metadata["celex"],
                '_id': doc.metadata["_id"]
            })
        return parsed_documents

    def _format_context_docs(self, context_docs: List[dict]) -> str:
        """
        Format a list of documents into a single string.

        Args:
            context_docs (List[dict]): A list of dictionaries containing text from context documents.

        Returns:
            str: A string containing the concatenated text from all context documents.
        """

        context_str = ''
        for doc in context_docs:
            context_str += doc['text'] + "\n\n"
        return context_str

    def get_ids_from_celexes(self, celex_list: List[str]):
        """
        Retrieve the IDs of the documents given their CELEX numbers.

        Args:
            celex_list (List[str]): A list of CELEX numbers.

        Returns:
            List[str]: A list of document IDs corresponding to the provided CELEX numbers
        """

        if self.vectorDB_class == 'Qdrant':
            scroll_filter = rest.Filter(
                must=[
                    rest.FieldCondition(
                        key="celex",
                        match=rest.MatchAny(any=celex_list),
                    )
                ])
            offset = -1
            ids = []
            while not (offset is None and offset != -1):
                if offset == -1:
                    offset = None
                points, offset = self.retriever.vectorstore.client.scroll(
                    collection_name=self.retriever.vectorstore.collection_name,
                    limit=100,
                    offset=offset,
                    scroll_filter=scroll_filter,
                    with_payload=False
                )
                ids.extend([p.id for p in points])
        else:
            NotImplementedError(f"Not supported {self.vectorDB_class} vectorDB class")
        return ids

    def _get_qdrant_ids_filter(self, ids):
        """
        Returns a Qdrant filter to filter documents based on their IDs.

        This function acts as a workaround due to a hidden bug in Qdrant 
        that prevents correct filtering using CELEX numbers.

        Args:
            ids (List[str]): A list of document IDs.

        Returns:
            Qdrant filter: A Qdrant filter to filter documents based on their IDs.
        """

        filter = rest.Filter(
            must=[
                rest.HasIdCondition(has_id=ids),
            ],
        )

        return filter

    def get_relevant_docs(self, question: str, ids_list: Optional[List[str]] = None) -> List[dict]:
        """
        Retrieve relevant documents based on a given question.
        If ids_list is provided, the search is filtered by the given IDs.

        Args:
            question (str): The question for which relevant documents are retrieved.
            ids_list (Optional[List[str]]): A list of document IDs to filter the search results.

        Returns:
            List[dict]: A list of relevant documents.
        """
        if ids_list:
            search_kwargs = {k:v for k,v in self.retriever.search_kwargs.items()}
            if self.vectorDB_class == 'Qdrant':
                filter = self._get_qdrant_ids_filter(ids_list)
            else:
                raise ValueError(f'Celex filter not supported for {self.vectorDB_class}')

            search_kwargs.update({'filter': filter})
            docs = self.relevant_documents_pipeline.invoke(
                {'question': question},
                config={"configurable": {"search_kwargs": search_kwargs}})
        else:
            docs = self.relevant_documents_pipeline.invoke({'question': question})
        return docs

    def get_context(self, text: str, ids_list:Optional[List[str]]=None) -> str:
        """
        Retrieve context for a given text.
        If ids_list is provided, the search is filtered by the given IDs.

        Args:
            text (str): The text for which context is retrieved.
            ids_list (Optional[List[str]]): A list of document IDs to filter the search results.

        Returns:
            str: A formatted string containing the relevant documents texts.
        """

        docs = self.get_relevant_docs(text, ids_list=ids_list)
        return self._format_context_docs(docs)

    def _remove_last_messages(self, session_id:str, n:int) -> None:
        """
        Remove last n messages from the chat history of a specific session.

        Args:
            session_id (str): The session ID for which messages are removed.
            n (int): The number of last messages to remove.
        """
        chat_history = self.get_chat_history(session_id=session_id)
        message_history = chat_history.messages
        chat_history.clear()
        message_history = message_history[:-n]
        for message in message_history:
            chat_history.add_message(message)

    def _format_history(self, session_id:str) -> str:
        """
        Format chat history for a specific session into a string.

        Args:
            session_id (str): The session ID for which the chat history is formatted.

        Returns:
            str: A formatted string containing the chat history for the specified session.
        """

        chat_history = self.get_chat_history(session_id).messages
        formatted_history = ""
        for message in chat_history:
            formatted_history += f"{message.type}: {message.content}\n\n"
        return formatted_history

    def _resize_context(self, context_docs: List[dict]) -> List[dict]:
        """
        Resize the dimension of the context in terms of number of tokens.
        If the concatenation of document text exceeds max_context_size,
        the document text is cut off to meet the limit.

        Args:
            context_docs (List[dict]): List of formatted documents.

        Returns:
            List[dict]: Returns the list of resized documents.
        """
        lengths = [self.llm.get_num_tokens(doc['text']) for doc in context_docs]
        resized_contexts = []
        total_len = 0
        for i, l in enumerate(lengths):
            if l + total_len <= self.max_context_size:
                resized_contexts.append(context_docs[i])
                total_len += l
        return resized_contexts

    def get_answer(self, 
                   session_id: str,
                   question: str,
                   context_docs: List[dict],
                   from_tool: bool = False,
                   ids_list: List[str] = None
                   ) -> Answer:
        """
        Get an answer to a question of a specific session, considering context documents and history messages.
        If ids_list is provided, any search for new context documents is filtered by the given IDs.

        Args:
            session_id (str): The session ID for which the answer is retrieved.
            question (str): The new user message.
            context_docs (List[dict]): A list of documents used as context to answer the user message.
            from_tool (bool, optional): Whether the question originates from a tool. Defaults to False.
            ids_list (Optional[List[str]]): A list of document IDs to filter the search results for new context documents.

        Returns:
            Answer: An object containing the answer along with a new list of context documents 
                if those provided are insufficient to answer the question.

        """
        resized_docs = self._resize_context(context_docs)
        context = self._format_context_docs(resized_docs)

        result = self.chain_with_history.invoke(
            {"context": context, "question": question},
            config={"configurable": {"session_id": session_id}}
        )

        if self.use_functions and len(result.additional_kwargs) > 0:
            if from_tool:
                self._remove_last_messages(session_id=session_id, n=1)
                history = self._format_history(session_id)
                result = self.chain_loop_answer.invoke({'history': history})
                self.get_chat_history(session_id=session_id).add_message(AIMessage(result.content))
                return Answer(answer=result.content, status=-1)
            text = eval(result.additional_kwargs['tool_calls'][0]['function']['arguments'])['text']
            new_docs = self.get_relevant_docs(text, ids_list=ids_list)
            self._remove_last_messages(session_id=session_id, n=2)

            result = self.get_answer(
                session_id=session_id,
                question=question,
                context_docs=new_docs,
                from_tool=True,
                ids_list=ids_list
            )
            if result.status == 1:
                return Answer(answer=result.answer, new_documents=new_docs)
            else:
                return Answer(answer=result.answer)
        return Answer(answer=result.content)