File size: 9,342 Bytes
95079e7
 
 
 
 
 
 
 
 
 
 
2543dfa
95079e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543dfa
95079e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import streamlit as st
from lida import Manager, TextGenerationConfig, llm
from lida.datamodel import Goal
import os
import pandas as pd


# make data dir if it doesn't exist
os.makedirs("data", exist_ok=True)

st.set_page_config(
    page_title="LLM Visualization on tabular data",
    page_icon="📊",
)


st.sidebar.write("## Setup")

# Step 1 - Get OpenAI API key
openai_key = os.getenv("OPENAI_API_KEY")

if not openai_key:
    openai_key = st.sidebar.text_input("Enter OpenAI API key:")
    if openai_key:
        display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
        st.sidebar.write(f"Current key: {display_key}")
    else:
        st.sidebar.write("Please enter OpenAI API key.")
else:
    display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
    st.sidebar.write(f"OpenAI API key loaded from environment variable: {display_key}")

# Step 2 - Select a dataset and summarization method
    
if openai_key:
    # Initialize selected_dataset to None
    selected_dataset = None

    # select model from gpt-4 , gpt-3.5-turbo, gpt-3.5-turbo-16k
    st.sidebar.write("## Text Generation Model")
    models = ["gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"]
    selected_model = st.sidebar.selectbox(
        'Choose a model',
        options=models,
        index=0
    )

    # select temperature on a scale of 0.0 to 1.0
    # st.sidebar.write("## Text Generation Temperature")
    temperature = st.sidebar.slider(
        "Temperature",
        min_value=0.0,
        max_value=1.0,
        value=0.0)

    # set use_cache in sidebar
    use_cache = st.sidebar.checkbox("Use cache", value=True)

    # Handle dataset selection and upload
    st.sidebar.write("## Data Summarization")
    st.sidebar.write("### Choose a dataset")

    datasets = [
        {"label": "Select a dataset", "url": None},
        {"label": "Cars", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/cars.csv"},
        {"label": "Weather", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/weather.json"},
    ]

    selected_dataset_label = st.sidebar.selectbox(
        'Choose a dataset',
        options=[dataset["label"] for dataset in datasets],
        index=0
    )

    upload_own_data = st.sidebar.checkbox("Upload your own data")

    if upload_own_data:
        uploaded_file = st.sidebar.file_uploader("Choose a CSV or JSON file", type=["csv", "json"])

        if uploaded_file is not None:
            # Get the original file name and extension
            file_name, file_extension = os.path.splitext(uploaded_file.name)

            # Load the data depending on the file type
            if file_extension.lower() == ".csv":
                data = pd.read_csv(uploaded_file)
            elif file_extension.lower() == ".json":
                data = pd.read_json(uploaded_file)

            # Save the data using the original file name in the data dir
            uploaded_file_path = os.path.join("data", uploaded_file.name)
            data.to_csv(uploaded_file_path, index=False)

            selected_dataset = uploaded_file_path

            datasets.append({"label": file_name, "url": uploaded_file_path})

            # st.sidebar.write("Uploaded file path: ", uploaded_file_path)
    else:
        selected_dataset = datasets[[dataset["label"]
                                     for dataset in datasets].index(selected_dataset_label)]["url"]

    if not selected_dataset:
        st.info("To continue, select a dataset from the sidebar on the left or upload your own.")

    st.sidebar.write("### Choose a summarization method")
    # summarization_methods = ["default", "llm", "columns"]
    summarization_methods = [
        {"label": "llm",
         "description":
         "Uses the LLM to generate annotate the default summary, adding details such as semantic types for columns and dataset description"},
        {"label": "default",
         "description": "Uses dataset column statistics and column names as the summary"},

        {"label": "columns", "description": "Uses the dataset column names as the summary"}]

    # selected_method = st.sidebar.selectbox("Choose a method", options=summarization_methods)
    selected_method_label = st.sidebar.selectbox(
        'Choose a method',
        options=[method["label"] for method in summarization_methods],
        index=0
    )

    selected_method = summarization_methods[[
        method["label"] for method in summarization_methods].index(selected_method_label)]["label"]

    # add description of selected method in very small font to sidebar
    selected_summary_method_description = summarization_methods[[
        method["label"] for method in summarization_methods].index(selected_method_label)]["description"]

    if selected_method:
        st.sidebar.markdown(
            f"<span> {selected_summary_method_description} </span>",
            unsafe_allow_html=True)

# Step 3 - Generate data summary
if openai_key and selected_dataset and selected_method:
    lida = Manager(text_gen=llm("openai", api_key=openai_key))
    textgen_config = TextGenerationConfig(
        n=1,
        temperature=temperature,
        model=selected_model,
        use_cache=use_cache)

    st.write("## Summary")
    # **** lida.summarize *****
    summary = lida.summarize(
        selected_dataset,
        summary_method=selected_method,
        textgen_config=textgen_config)

    if "dataset_description" in summary:
        st.write(summary["dataset_description"])

    if "fields" in summary:
        fields = summary["fields"]
        nfields = []
        for field in fields:
            flatted_fields = {}
            flatted_fields["column"] = field["column"]
            # flatted_fields["dtype"] = field["dtype"]
            for row in field["properties"].keys():
                if row != "samples":
                    flatted_fields[row] = field["properties"][row]
                else:
                    flatted_fields[row] = str(field["properties"][row])
            # flatted_fields = {**flatted_fields, **field["properties"]}
            nfields.append(flatted_fields)
        nfields_df = pd.DataFrame(nfields)
        st.write(nfields_df)
    else:
        st.write(str(summary))

    # Step 4 - Generate goals
    if summary:
        st.sidebar.write("### Goal Selection")

        num_goals = st.sidebar.slider(
            "Number of goals to generate",
            min_value=1,
            max_value=10,
            value=4)
        own_goal = st.sidebar.checkbox("Add Your Own Goal")

        # **** lida.goals *****
        goals = lida.goals(summary, n=num_goals, textgen_config=textgen_config)
        st.write(f"## Goals ({len(goals)})")

        default_goal = goals[0].question
        goal_questions = [goal.question for goal in goals]

        if own_goal:
            user_goal = st.sidebar.text_input("Describe Your Goal")

            if user_goal:

                new_goal = Goal(question=user_goal, visualization=user_goal, rationale="")
                goals.append(new_goal)
                goal_questions.append(new_goal.question)

        selected_goal = st.selectbox('Choose a generated goal', options=goal_questions, index=0)

        # st.markdown("### Selected Goal")
        selected_goal_index = goal_questions.index(selected_goal)
        st.write(goals[selected_goal_index])

        selected_goal_object = goals[selected_goal_index]

        # Step 5 - Generate visualizations
        if selected_goal_object:
            st.sidebar.write("## Visualization Library")
            visualization_libraries = ["seaborn", "matplotlib", "plotly"]

            selected_library = st.sidebar.selectbox(
                'Choose a visualization library',
                options=visualization_libraries,
                index=0
            )

            # Update the visualization generation call to use the selected library.
            st.write("## Visualizations")

            # slider for number of visualizations
            num_visualizations = st.sidebar.slider(
                "Number of visualizations to generate",
                min_value=1,
                max_value=10,
                value=2)

            textgen_config = TextGenerationConfig(
                n=num_visualizations, temperature=temperature,
                model=selected_model,
                use_cache=use_cache)

            # **** lida.visualize *****
            visualizations = lida.visualize(
                summary=summary,
                goal=selected_goal_object,
                textgen_config=textgen_config,
                library=selected_library)

            viz_titles = [f'Visualization {i+1}' for i in range(len(visualizations))]

            selected_viz_title = st.selectbox('Choose a visualization', options=viz_titles, index=0)

            selected_viz = visualizations[viz_titles.index(selected_viz_title)]

            if selected_viz.raster:
                from PIL import Image
                import io
                import base64

                imgdata = base64.b64decode(selected_viz.raster)
                img = Image.open(io.BytesIO(imgdata))
                st.image(img, caption=selected_viz_title, use_column_width=True)

            st.write("### Visualization Code")
            st.code(selected_viz.code)