Spaces:
Sleeping
Sleeping
File size: 9,342 Bytes
95079e7 2543dfa 95079e7 2543dfa 95079e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import streamlit as st
from lida import Manager, TextGenerationConfig, llm
from lida.datamodel import Goal
import os
import pandas as pd
# make data dir if it doesn't exist
os.makedirs("data", exist_ok=True)
st.set_page_config(
page_title="LLM Visualization on tabular data",
page_icon="📊",
)
st.sidebar.write("## Setup")
# Step 1 - Get OpenAI API key
openai_key = os.getenv("OPENAI_API_KEY")
if not openai_key:
openai_key = st.sidebar.text_input("Enter OpenAI API key:")
if openai_key:
display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
st.sidebar.write(f"Current key: {display_key}")
else:
st.sidebar.write("Please enter OpenAI API key.")
else:
display_key = openai_key[:2] + "*" * (len(openai_key) - 5) + openai_key[-3:]
st.sidebar.write(f"OpenAI API key loaded from environment variable: {display_key}")
# Step 2 - Select a dataset and summarization method
if openai_key:
# Initialize selected_dataset to None
selected_dataset = None
# select model from gpt-4 , gpt-3.5-turbo, gpt-3.5-turbo-16k
st.sidebar.write("## Text Generation Model")
models = ["gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"]
selected_model = st.sidebar.selectbox(
'Choose a model',
options=models,
index=0
)
# select temperature on a scale of 0.0 to 1.0
# st.sidebar.write("## Text Generation Temperature")
temperature = st.sidebar.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0)
# set use_cache in sidebar
use_cache = st.sidebar.checkbox("Use cache", value=True)
# Handle dataset selection and upload
st.sidebar.write("## Data Summarization")
st.sidebar.write("### Choose a dataset")
datasets = [
{"label": "Select a dataset", "url": None},
{"label": "Cars", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/cars.csv"},
{"label": "Weather", "url": "https://raw.githubusercontent.com/uwdata/draco/master/data/weather.json"},
]
selected_dataset_label = st.sidebar.selectbox(
'Choose a dataset',
options=[dataset["label"] for dataset in datasets],
index=0
)
upload_own_data = st.sidebar.checkbox("Upload your own data")
if upload_own_data:
uploaded_file = st.sidebar.file_uploader("Choose a CSV or JSON file", type=["csv", "json"])
if uploaded_file is not None:
# Get the original file name and extension
file_name, file_extension = os.path.splitext(uploaded_file.name)
# Load the data depending on the file type
if file_extension.lower() == ".csv":
data = pd.read_csv(uploaded_file)
elif file_extension.lower() == ".json":
data = pd.read_json(uploaded_file)
# Save the data using the original file name in the data dir
uploaded_file_path = os.path.join("data", uploaded_file.name)
data.to_csv(uploaded_file_path, index=False)
selected_dataset = uploaded_file_path
datasets.append({"label": file_name, "url": uploaded_file_path})
# st.sidebar.write("Uploaded file path: ", uploaded_file_path)
else:
selected_dataset = datasets[[dataset["label"]
for dataset in datasets].index(selected_dataset_label)]["url"]
if not selected_dataset:
st.info("To continue, select a dataset from the sidebar on the left or upload your own.")
st.sidebar.write("### Choose a summarization method")
# summarization_methods = ["default", "llm", "columns"]
summarization_methods = [
{"label": "llm",
"description":
"Uses the LLM to generate annotate the default summary, adding details such as semantic types for columns and dataset description"},
{"label": "default",
"description": "Uses dataset column statistics and column names as the summary"},
{"label": "columns", "description": "Uses the dataset column names as the summary"}]
# selected_method = st.sidebar.selectbox("Choose a method", options=summarization_methods)
selected_method_label = st.sidebar.selectbox(
'Choose a method',
options=[method["label"] for method in summarization_methods],
index=0
)
selected_method = summarization_methods[[
method["label"] for method in summarization_methods].index(selected_method_label)]["label"]
# add description of selected method in very small font to sidebar
selected_summary_method_description = summarization_methods[[
method["label"] for method in summarization_methods].index(selected_method_label)]["description"]
if selected_method:
st.sidebar.markdown(
f"<span> {selected_summary_method_description} </span>",
unsafe_allow_html=True)
# Step 3 - Generate data summary
if openai_key and selected_dataset and selected_method:
lida = Manager(text_gen=llm("openai", api_key=openai_key))
textgen_config = TextGenerationConfig(
n=1,
temperature=temperature,
model=selected_model,
use_cache=use_cache)
st.write("## Summary")
# **** lida.summarize *****
summary = lida.summarize(
selected_dataset,
summary_method=selected_method,
textgen_config=textgen_config)
if "dataset_description" in summary:
st.write(summary["dataset_description"])
if "fields" in summary:
fields = summary["fields"]
nfields = []
for field in fields:
flatted_fields = {}
flatted_fields["column"] = field["column"]
# flatted_fields["dtype"] = field["dtype"]
for row in field["properties"].keys():
if row != "samples":
flatted_fields[row] = field["properties"][row]
else:
flatted_fields[row] = str(field["properties"][row])
# flatted_fields = {**flatted_fields, **field["properties"]}
nfields.append(flatted_fields)
nfields_df = pd.DataFrame(nfields)
st.write(nfields_df)
else:
st.write(str(summary))
# Step 4 - Generate goals
if summary:
st.sidebar.write("### Goal Selection")
num_goals = st.sidebar.slider(
"Number of goals to generate",
min_value=1,
max_value=10,
value=4)
own_goal = st.sidebar.checkbox("Add Your Own Goal")
# **** lida.goals *****
goals = lida.goals(summary, n=num_goals, textgen_config=textgen_config)
st.write(f"## Goals ({len(goals)})")
default_goal = goals[0].question
goal_questions = [goal.question for goal in goals]
if own_goal:
user_goal = st.sidebar.text_input("Describe Your Goal")
if user_goal:
new_goal = Goal(question=user_goal, visualization=user_goal, rationale="")
goals.append(new_goal)
goal_questions.append(new_goal.question)
selected_goal = st.selectbox('Choose a generated goal', options=goal_questions, index=0)
# st.markdown("### Selected Goal")
selected_goal_index = goal_questions.index(selected_goal)
st.write(goals[selected_goal_index])
selected_goal_object = goals[selected_goal_index]
# Step 5 - Generate visualizations
if selected_goal_object:
st.sidebar.write("## Visualization Library")
visualization_libraries = ["seaborn", "matplotlib", "plotly"]
selected_library = st.sidebar.selectbox(
'Choose a visualization library',
options=visualization_libraries,
index=0
)
# Update the visualization generation call to use the selected library.
st.write("## Visualizations")
# slider for number of visualizations
num_visualizations = st.sidebar.slider(
"Number of visualizations to generate",
min_value=1,
max_value=10,
value=2)
textgen_config = TextGenerationConfig(
n=num_visualizations, temperature=temperature,
model=selected_model,
use_cache=use_cache)
# **** lida.visualize *****
visualizations = lida.visualize(
summary=summary,
goal=selected_goal_object,
textgen_config=textgen_config,
library=selected_library)
viz_titles = [f'Visualization {i+1}' for i in range(len(visualizations))]
selected_viz_title = st.selectbox('Choose a visualization', options=viz_titles, index=0)
selected_viz = visualizations[viz_titles.index(selected_viz_title)]
if selected_viz.raster:
from PIL import Image
import io
import base64
imgdata = base64.b64decode(selected_viz.raster)
img = Image.open(io.BytesIO(imgdata))
st.image(img, caption=selected_viz_title, use_column_width=True)
st.write("### Visualization Code")
st.code(selected_viz.code) |