File size: 4,538 Bytes
1b94225
626d7ff
 
 
1b94225
 
 
626d7ff
 
 
 
 
 
 
 
1b94225
 
 
 
 
 
 
 
f944859
1b94225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626d7ff
 
 
1b94225
626d7ff
 
 
 
 
 
1b94225
 
 
 
626d7ff
1b94225
 
 
 
 
 
 
 
 
 
 
 
 
626d7ff
1b94225
 
626d7ff
 
1b94225
 
 
 
 
 
 
 
 
626d7ff
1b94225
 
 
626d7ff
 
1b94225
 
 
626d7ff
1b94225
 
 
 
 
 
 
626d7ff
1b94225
 
 
 
 
 
 
626d7ff
 
1b94225
5054388
626d7ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import pathlib

import gradio as gr
import torch
from PIL import Image

repo_dir = pathlib.Path("Thin-Plate-Spline-Motion-Model").absolute()
if not repo_dir.exists():
    os.system("git clone https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model")
os.chdir(repo_dir.name)
if not (repo_dir / "checkpoints").exists():
    os.system("mkdir checkpoints")
if not (repo_dir / "checkpoints/vox.pth.tar").exists():
    os.system("gdown 1-CKOjv_y_TzNe-dwQsjjeVxJUuyBAb5X -O checkpoints/vox.pth.tar")



title = "# Thin-Plate Spline Motion Model for Image Animation"
DESCRIPTION = '''### Gradio demo for <b>Thin-Plate Spline Motion Model for Image Animation</b>, CVPR 2022. <a href='https://arxiv.org/abs/2203.14367'>[Paper]</a><a href='https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model'>[Github Code]</a>

<img id="overview" alt="overview" src="https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model/raw/main/assets/vox.gif" />
'''
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.Image-Animation-using-Thin-Plate-Spline-Motion-Model" />'


def get_style_image_path(style_name: str) -> str:
    base_path = 'assets'
    filenames = {
        'source': 'source.png',
        'driving': 'driving.mp4',
    }
    return f'{base_path}/{filenames[style_name]}'


def get_style_image_markdown_text(style_name: str) -> str:
    url = get_style_image_path(style_name)
    return f'<img id="style-image" src="{url}" alt="style image">'


def update_style_image(style_name: str) -> dict:
    text = get_style_image_markdown_text(style_name)
    return gr.Markdown.update(value=text)


def inference(img, vid):
    if not os.path.exists('temp'):
        os.system('mkdir temp')

    img.save("temp/image.jpg", "JPEG")
    if torch.cuda.is_available():
        os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4'")
    else:
        os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4' --cpu")
    return './temp/result.mp4'



def main():
    with gr.Blocks(css='style.css') as demo:
        gr.Markdown(title)
        gr.Markdown(DESCRIPTION)

        with gr.Box():
            gr.Markdown('''## Step 1 (Provide Input Face Image)
- Drop an image containing a face to the **Input Image**.
    - If there are multiple faces in the image, use Edit button in the upper right corner and crop the input image beforehand.
''')
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        input_image = gr.Image(label='Input Image',
                                               type="pil")

            with gr.Row():
                paths = sorted(pathlib.Path('assets').glob('*.png'))
                gr.Examples(inputs=[input_image],
                            examples=[[path.as_posix()] for path in paths])

        with gr.Box():
            gr.Markdown('''## Step 2 (Select Driving Video)
- Select **Style Driving Video for the face image animation**.
''')
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        driving_video = gr.Video(label='Driving Video',
                                                 format="mp4")

            with gr.Row():
                paths = sorted(pathlib.Path('assets').glob('*.mp4'))
                gr.Examples(inputs=[driving_video],
                            examples=[[path.as_posix()] for path in paths])

        with gr.Box():
            gr.Markdown('''## Step 3 (Generate Animated Image based on the Video)
- Hit the **Generate** button. (Note: On cpu-basic, it takes ~ 10 minutes to generate final results.)
''')
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        generate_button = gr.Button('Generate')

                with gr.Column():
                    result = gr.Video(label="Output")
        gr.Markdown(FOOTER)
        generate_button.click(fn=inference,
                              inputs=[
                                  input_image,
                                  driving_video
                              ],
                              outputs=result)

    demo.queue(max_size=10).launch()

if __name__ == '__main__':
    main()