File size: 5,034 Bytes
0df70ac df11144 0244288 df11144 0df70ac df11144 a76211f df11144 8b55d5e 7668197 df11144 439d8a3 df11144 0df70ac df11144 0df70ac df11144 0df70ac 439d8a3 0df70ac 5188f5a 439d8a3 0df70ac 439d8a3 df11144 0df70ac df11144 0df70ac df11144 439d8a3 df11144 0df70ac df11144 9255728 df11144 0df70ac 9255728 df11144 9255728 df11144 0df70ac 9255728 df11144 0df70ac 9255728 0df70ac 2599152 0df70ac 9255728 0df70ac 2599152 34e8385 df11144 0df70ac 34e8385 0df70ac 34e8385 0df70ac 34e8385 0df70ac 34e8385 0df70ac 34e8385 0df70ac 34e8385 0df70ac 34e8385 0df70ac 34e8385 0df70ac 34e8385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import csv
import io
import requests
import json
import html # For escaping HTML characters
from bs4 import BeautifulSoup
from openai import OpenAI
# Initialize OpenAI API with Nvidia's Llama model
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key="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"
)
def clean_test_case_output(text):
"""
Cleans the output to handle HTML characters and unwanted tags.
"""
text = html.unescape(text) # Unescape HTML entities
soup = BeautifulSoup(text, 'html.parser') # Use BeautifulSoup to handle HTML tags
cleaned_text = soup.get_text(separator="\n").strip() # Remove tags and handle newlines
return cleaned_text
def generate_testcases(user_story):
"""
Generates advanced QA test cases based on a provided user story by interacting
with Nvidia's llama model API. The prompt is refined for clarity,
and the output is processed for better quality.
:param user_story: A string representing the user story for which to generate test cases.
:return: A list of test cases in the form of dictionaries.
"""
# Few-shot learning examples to guide the model
few_shot_examples = """
"if its not a DropBury or ODAC Portal User Story, then we perform testing in Tech360 iOS App"
"Generate as many as testcases possible minimum 6 ,maximum it can be anything"
"Understand the story thoroughly"
"If it's a DropBury or ODAC Portal User Story, then we perform testing in ODAC Portal"
"""
# Combine the few-shot examples with the user story for the model to process
prompt = few_shot_examples + f"\nUser Story: {user_story}\n"
try:
# Call the Nvidia llama API with the refined prompt
completion = client.chat.completions.create(
model="meta/llama-3.1-405b-instruct", # Using llama3.1 405b model
messages=[
{"role": "user", "content": prompt}
],
temperature=0.03, # Further lowering temperature for precise and deterministic output
top_p=0.7, # Prioritize high-probability tokens even more
max_tokens=4096, # Increase max tokens to allow longer content
stream=True # Streaming the response for faster retrieval
)
# Initialize an empty string to accumulate the response
test_cases_text = ""
# Accumulate the response from the streaming chunks
for chunk in completion:
if chunk.choices[0].delta.content is not None:
test_cases_text += chunk.choices[0].delta.content
# Ensure the entire response is captured before cleaning
if test_cases_text.strip() == "":
return [{"test_case": "No test cases generated or output was empty."}]
# Clean the output by unescaping HTML entities and replacing <br> tags
test_cases_text = clean_test_case_output(test_cases_text)
try:
# Try to parse the output as JSON, assuming the model returns structured test cases
test_cases = json.loads(test_cases_text)
if isinstance(test_cases, list):
return test_cases # Return structured test cases
else:
return [{"test_case": test_cases_text}] # Return as a list with the text wrapped in a dict
except json.JSONDecodeError:
# Fallback: return the raw text if JSON parsing fails
return [{"test_case": test_cases_text}]
except requests.exceptions.RequestException as e:
print(f"API request failed: {str(e)}")
return []
# Export test cases in CSV format
def export_test_cases(test_cases, format='csv'):
if not test_cases:
return "No test cases to export."
# Convert test cases (which are currently strings) into a structured format for CSV
structured_test_cases = [{'Test Case': case.get('test_case', case)} for case in test_cases]
if format == 'csv':
if isinstance(test_cases, list) and isinstance(test_cases[0], dict):
output = io.StringIO()
csv_writer = csv.DictWriter(output, fieldnames=structured_test_cases[0].keys(), quoting=csv.QUOTE_ALL)
csv_writer.writeheader()
csv_writer.writerows(structured_test_cases)
return output.getvalue()
else:
raise ValueError("Test cases must be a list of dictionaries for CSV export.")
# Save test cases as a CSV file
def save_test_cases_as_file(test_cases, format='csv'):
if not test_cases:
return "No test cases to save."
if format == 'csv':
with open('test_cases.csv', 'w', newline='') as file:
dict_writer = csv.DictWriter(file, fieldnames=['Test Case'])
dict_writer.writeheader()
dict_writer.writerows([{'Test Case': case.get('test_case', case)} for case in test_cases])
else:
return f"Unsupported format: {format}"
return f'{format} file saved'
|