judge-arena / app.py
kaikaidai's picture
Update app.py
b58e0f1 verified
raw
history blame
24.2 kB
from datetime import datetime
import json
import gradio as gr
import re
import random
from collections import defaultdict
import pandas as pd
import os
from gen_api_answer import get_model_response, parse_model_response
from common import *
# Model and ELO score data
DEFAULT_ELO = 1500 # Starting ELO for new models
K_FACTOR = 32 # Standard chess K-factor, adjust as needed
elo_scores = defaultdict(lambda: DEFAULT_ELO)
vote_counts = defaultdict(int)
# Load the model_data from JSONL
def load_model_data():
model_data = {}
try:
with open('data/models.jsonl', 'r') as f:
for line in f:
model = json.loads(line)
model_data[model['name']] = {
'organization': model['organization'],
'license': model['license'],
'api_model': model['api_model']
}
except FileNotFoundError:
print("Warning: models.jsonl not found")
return {}
return model_data
model_data = load_model_data()
current_session_id = 0
voting_data = []
def get_new_session_id():
global current_session_id
current_session_id += 1
return f"user{current_session_id}"
def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
vote_entry = {
"timestamp": datetime.now().isoformat(),
"prompt": prompt,
"response_a": response_a,
"response_b": response_b,
"model_a": model_a,
"model_b": model_b,
"winner": winner,
"judge_id": judge_id,
}
voting_data.append(vote_entry)
# Save to file after each vote
with open('voting_data.json', 'w') as f:
json.dump(voting_data, f, indent=2)
def parse_variables(prompt):
# Extract variables enclosed in double curly braces
variables = re.findall(r'{{(.*?)}}', prompt)
# Remove duplicates while preserving order
seen = set()
variables = [x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))]
return variables
def get_final_prompt(eval_prompt, variable_values):
# Replace variables in the eval prompt with their values
for var, val in variable_values.items():
eval_prompt = eval_prompt.replace('{{' + var + '}}', val)
return eval_prompt
def submit_prompt(eval_prompt, *variable_values):
try:
variables = parse_variables(eval_prompt)
variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
final_prompt = get_final_prompt(eval_prompt, variable_values_dict)
models = list(model_data.keys())
model1, model2 = random.sample(models, 2)
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)
response_a = get_model_response(model_a, model_data.get(model_a), final_prompt)
response_b = get_model_response(model_b, model_data.get(model_b), final_prompt)
return (
response_a,
response_b,
gr.update(visible=True),
gr.update(visible=True),
model_a,
model_b
)
except Exception as e:
print(f"Error in submit_prompt: {str(e)}")
return (
"Error generating response",
"Error generating response",
gr.update(visible=False),
gr.update(visible=False),
None,
None
)
def vote(choice, model_a, model_b, prompt, response_a, response_b, judge_id):
# Update ELO scores based on user choice
elo_a = elo_scores[model_a]
elo_b = elo_scores[model_b]
# Calculate expected scores
Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))
# Assign actual scores
if choice == 'A':
Sa, Sb = 1, 0
elif choice == 'B':
Sa, Sb = 0, 1
else:
Sa, Sb = 0.5, 0.5
# Update scores and vote counts
elo_scores[model_a] += K_FACTOR * (Sa - Ea)
elo_scores[model_b] += K_FACTOR * (Sb - Eb)
vote_counts[model_a] += 1
vote_counts[model_b] += 1
# Store the vote data
store_vote_data(prompt, response_a, response_b, model_a, model_b, choice, judge_id)
# Return updates for UI components
return {
action_buttons_row: gr.update(visible=False),
model_name_a: gr.update(value=f"*Model: {model_a}*"),
model_name_b: gr.update(value=f"*Model: {model_b}*"),
send_btn: gr.update(interactive=True),
regenerate_button: gr.update(visible=True, interactive=True)
}
def get_leaderboard():
# Generate leaderboard data
leaderboard = []
for model, elo in elo_scores.items():
votes = vote_counts[model]
ci = 1.96 * (400 / (votes + 1) ** 0.5) # Approximate 95% confidence interval
data = {
'Model': model,
'ELO Score': f"{elo:.2f}",
'95% CI': f"±{ci:.2f}",
'# Votes': votes,
'Organization': model_data[model]['organization'],
'License': model_data[model]['license'],
}
leaderboard.append(data)
# Sort by ELO score
leaderboard.sort(key=lambda x: float(x['ELO Score']), reverse=True)
return leaderboard
def regenerate_prompt(model_a, model_b, eval_prompt, *variable_values):
variables = parse_variables(eval_prompt)
variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
final_prompt = get_final_prompt(eval_prompt, variable_values_dict)
# Get available models excluding the previous ones
available_models = [m for m in model_data.keys() if m not in (model_a, model_b)]
# If we have enough models for new pairs
if len(available_models) >= 2:
model1, model2 = random.sample(available_models, 2)
else:
# Fallback to allowing previous models if necessary
model1, model2 = random.sample(list(model_data.keys()), 2)
response_a = get_model_response(model1, model_data.get(model1), final_prompt)
response_b = get_model_response(model2, model_data.get(model2), final_prompt)
# Parse the responses
score_a, critique_a = parse_model_response(response_a)
score_b, critique_b = parse_model_response(response_b)
return (
score_a, # score_a textbox
critique_a, # critique_a textbox
score_b, # score_b textbox
critique_b, # critique_b textbox
gr.update(visible=True), # action_buttons_row
gr.update(value="*Model: Unknown*"), # model_name_a
gr.update(value="*Model: Unknown*"), # model_name_b
model1, # model_a_state
model2 # model_b_state
)
def calculate_elo_change(rating_a, rating_b, winner):
"""Calculate ELO rating changes for both players."""
expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400))
expected_b = 1 - expected_a
if winner == "A":
score_a, score_b = 1, 0
elif winner == "B":
score_a, score_b = 0, 1
else: # Handle ties
score_a, score_b = 0.5, 0.5
change_a = K_FACTOR * (score_a - expected_a)
change_b = K_FACTOR * (score_b - expected_b)
return change_a, change_b
def update_leaderboard():
"""Calculate current ELO ratings from voting history."""
ratings = defaultdict(lambda: DEFAULT_ELO)
matches = defaultdict(int)
wins = defaultdict(int)
# Load voting data
try:
with open('voting_data.json', 'r') as f:
voting_data = json.load(f)
except FileNotFoundError:
return pd.DataFrame()
# Process each vote
for vote in voting_data:
model_a = vote['model_a']
model_b = vote['model_b']
winner = vote['winner']
# Skip if models aren't in current model_data
if model_a not in model_data or model_b not in model_data:
continue
# Update match counts
matches[model_a] += 1
matches[model_b] += 1
if winner == "A":
wins[model_a] += 1
elif winner == "B":
wins[model_b] += 1
else: # Handle ties
wins[model_a] += 0.5
wins[model_b] += 0.5
# Update ELO ratings
change_a, change_b = calculate_elo_change(ratings[model_a], ratings[model_b], winner)
ratings[model_a] += change_a
ratings[model_b] += change_b
# Create leaderboard DataFrame
leaderboard_data = []
for model in model_data.keys(): # Only include current models
win_rate = (wins[model] / matches[model] * 100) if matches[model] > 0 else 0
ci = 1.96 * (400 / (matches[model] + 1) ** 0.5) if matches[model] > 0 else 0 # Confidence interval
leaderboard_data.append({
'Model': model,
'ELO': round(ratings[model], 1),
'95% CI': f"±{ci:.1f}",
'Matches': matches[model],
'Win Rate': f"{win_rate:.1f}%",
'Organization': model_data[model]['organization'],
'License': model_data[model]['license']
})
# Sort by ELO rating
df = pd.DataFrame(leaderboard_data)
return df.sort_values('ELO', ascending=False).reset_index(drop=True)
# Update the display_leaderboard function
def display_leaderboard():
df = update_leaderboard()
return gr.DataFrame(
value=df,
headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
datatype=['str', 'number', 'str', 'number', 'str', 'str', 'str'],
row_count=(len(df) + 1, 'dynamic'),
)
# Update the leaderboard table definition in the UI
leaderboard_table = gr.Dataframe(
headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
datatype=['str', 'number', 'str', 'number', 'str', 'str', 'str']
)
def get_leaderboard_stats():
"""Get summary statistics for the leaderboard."""
try:
with open('voting_data.json', 'r') as f:
voting_data = json.load(f)
total_votes = len(voting_data)
total_models = len(model_data)
last_updated = datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC")
return f"""
### Leaderboard Stats
- **Total Models**: {total_models}
- **Total Votes**: {total_votes}
- **Last Updated**: {last_updated}
"""
except FileNotFoundError:
return "No voting data available"
def initialize_voting_data():
"""Initialize or clear the voting data file."""
empty_data = []
with open('voting_data.json', 'w') as f:
json.dump(empty_data, f)
# Add this near the start of your app initialization, before the Gradio interface setup
if __name__ == "__main__":
initialize_voting_data()
# ... rest of your Gradio app setup ...
# Example evaluation metrics data
EXAMPLE_METRICS = {
"Hallucination": {
"prompt": DEFAULT_EVAL_PROMPT, # We'll replace these with actual examples
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
},
"Precision": {
"prompt": DEFAULT_EVAL_PROMPT,
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
},
"Recall": {
"prompt": DEFAULT_EVAL_PROMPT,
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
},
"Logical coherence": {
"prompt": DEFAULT_EVAL_PROMPT,
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
},
"Faithfulness": {
"prompt": DEFAULT_EVAL_PROMPT,
"input": DEFAULT_INPUT,
"response": DEFAULT_RESPONSE
}
}
def set_example_metric(metric_name):
if metric_name == "Custom":
return [
DEFAULT_EVAL_PROMPT,
DEFAULT_INPUT,
DEFAULT_RESPONSE
]
metric_data = EXAMPLE_METRICS[metric_name]
return [
metric_data["prompt"],
metric_data["input"],
metric_data["response"]
]
# Select random metric at startup
def get_random_metric():
metrics = list(EXAMPLE_METRICS.keys())
return set_example_metric(random.choice(metrics))
with gr.Blocks(theme='default', css=CSS_STYLES) as demo:
judge_id = gr.State(get_new_session_id())
gr.Markdown(MAIN_TITLE)
gr.Markdown(HOW_IT_WORKS)
with gr.Tabs():
with gr.TabItem("Judge Arena"):
with gr.Row():
with gr.Column():
gr.Markdown(BATTLE_RULES)
gr.Markdown(EVAL_DESCRIPTION)
# Add Example Metrics Section
with gr.Accordion("Example evaluation metrics", open=True):
with gr.Row():
custom_btn = gr.Button("Custom", variant="secondary")
hallucination_btn = gr.Button("Hallucination")
precision_btn = gr.Button("Precision")
recall_btn = gr.Button("Recall")
coherence_btn = gr.Button("Logical coherence")
faithfulness_btn = gr.Button("Faithfulness")
# Eval Prompt and Variables side by side
with gr.Row():
# Left column - Eval Prompt
with gr.Column(scale=1):
eval_prompt = gr.TextArea(
label="Evaluator Prompt",
lines=1,
value=DEFAULT_EVAL_PROMPT,
placeholder="Type your eval prompt here... denote variables in {{curly brackets}} to be populated on the right.",
show_label=True
)
# Right column - Variable Mapping
with gr.Column(scale=1):
gr.Markdown("### Sample to test the evaluator")
# Create inputs for up to 5 variables, with first two visible by default
variable_rows = []
for i in range(5):
initial_visibility = True if i < 2 else False
with gr.Group(visible=initial_visibility) as var_row:
# Variable input with direct label
initial_value = DEFAULT_INPUT if i == 0 else DEFAULT_RESPONSE
initial_label = "input" if i == 0 else "response" if i == 1 else f"variable_{i+1}"
var_input = gr.Textbox(
label=initial_label,
value=initial_value,
container=True
)
variable_rows.append((var_row, var_input))
# Send button
with gr.Row(elem_classes="send-button-row"):
send_btn = gr.Button(
value="Test the evaluators",
variant="primary",
size="lg",
scale=1
)
# Add divider heading for model outputs
gr.Markdown(VOTING_HEADER)
# Model Responses side-by-side
with gr.Row():
with gr.Column():
gr.Markdown("### Model A")
score_a = gr.Textbox(label="Score", interactive=False)
critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
model_name_a = gr.Markdown("*Model: Unknown*")
with gr.Column():
gr.Markdown("### Model B")
score_b = gr.Textbox(label="Score", interactive=False)
critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
model_name_b = gr.Markdown("*Model: Unknown*")
# Initially hide vote buttons and regenerate button
with gr.Row(visible=False) as action_buttons_row:
vote_a = gr.Button("Choose A", variant="primary")
vote_tie = gr.Button("Tie", variant="secondary")
vote_b = gr.Button("Choose B", variant="primary")
regenerate_button = gr.Button("Regenerate with different models", variant="secondary", visible=False)
# Add spacing and acknowledgements at the bottom
gr.Markdown(ACKNOWLEDGEMENTS)
with gr.TabItem("Leaderboard"):
refresh_button = gr.Button("Refresh")
stats_display = gr.Markdown()
leaderboard_table = gr.Dataframe(
headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'],
datatype=['str', 'number', 'str', 'number', 'str', 'str']
)
with gr.TabItem("Policy"):
gr.Markdown(POLICY_CONTENT)
# Define state variables for model tracking
model_a_state = gr.State()
model_b_state = gr.State()
# Update variable inputs based on the eval prompt
def update_variables(eval_prompt):
variables = parse_variables(eval_prompt)
updates = []
for i in range(5):
var_row, var_input = variable_rows[i]
if i < len(variables):
# Set default values for 'input' and 'response', otherwise leave empty
if variables[i] == "input":
initial_value = DEFAULT_INPUT
elif variables[i] == "response":
initial_value = DEFAULT_RESPONSE
else:
initial_value = "" # Empty for new variables
updates.extend([
gr.update(visible=True), # var_row
gr.update(value=initial_value, label=variables[i], visible=True) # var_input with dynamic label
])
else:
updates.extend([
gr.update(visible=False), # var_row
gr.update(value="", visible=False) # var_input
])
return updates
eval_prompt.change(fn=update_variables, inputs=eval_prompt, outputs=[item for sublist in variable_rows for item in sublist])
# Regenerate button functionality
regenerate_button.click(
fn=regenerate_prompt,
inputs=[model_a_state, model_b_state, eval_prompt] + [var_input for _, var_input in variable_rows],
outputs=[
score_a,
critique_a,
score_b,
critique_b,
action_buttons_row,
model_name_a,
model_name_b,
model_a_state,
model_b_state
]
)
# Update model names after responses are generated
def update_model_names(model_a, model_b):
return gr.update(value=f"*Model: {model_a}*"), gr.update(value=f"*Model: {model_b}*")
# Store the last submitted prompt and variables for comparison
last_submission = gr.State({})
# Update the vote button click handlers
vote_a.click(
fn=lambda *args: vote('A', *args),
inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
)
vote_b.click(
fn=lambda *args: vote('B', *args),
inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
)
vote_tie.click(
fn=lambda *args: vote('Tie', *args),
inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id],
outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button]
)
# Update the send button handler to store the submitted inputs
def submit_and_store(prompt, *variables):
# Create a copy of the current submission
current_submission = {"prompt": prompt, "variables": variables}
# Get the responses
response_a, response_b, buttons_visible, regen_visible, model_a, model_b = submit_prompt(prompt, *variables)
# Parse the responses
score_a, critique_a = parse_model_response(response_a)
score_b, critique_b = parse_model_response(response_b)
# Update the last_submission state with the current values
last_submission.value = current_submission
return (
score_a,
critique_a,
score_b,
critique_b,
buttons_visible,
gr.update(visible=True, interactive=True), # Show and enable regenerate button
model_a,
model_b,
gr.update(value="*Model: Unknown*"),
gr.update(value="*Model: Unknown*")
)
send_btn.click(
fn=submit_and_store,
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
outputs=[
score_a,
critique_a,
score_b,
critique_b,
action_buttons_row,
regenerate_button,
model_a_state,
model_b_state,
model_name_a, # Add model name outputs
model_name_b
]
)
# Update the input change handlers to also disable regenerate button
def handle_input_changes(prompt, *variables):
"""Enable send button and manage regenerate button based on input changes"""
last_inputs = last_submission.value
current_inputs = {"prompt": prompt, "variables": variables}
inputs_changed = last_inputs != current_inputs
return [
gr.update(interactive=True), # send button always enabled
gr.update(interactive=not inputs_changed) # regenerate button disabled if inputs changed
]
# Update the change handlers for prompt and variables
eval_prompt.change(
fn=handle_input_changes,
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
outputs=[send_btn, regenerate_button]
)
for _, var_input in variable_rows:
var_input.change(
fn=handle_input_changes,
inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
outputs=[send_btn, regenerate_button]
)
# Update the leaderboard
def refresh_leaderboard():
leaderboard = get_leaderboard()
data = [
[
entry['Model'],
float(entry['ELO Score']),
entry['95% CI'],
entry['# Votes'],
entry['Organization'],
entry['License']
] for entry in leaderboard
]
stats = get_leaderboard_stats()
return [gr.update(value=data), gr.update(value=stats)]
refresh_button.click(
fn=refresh_leaderboard,
inputs=None,
outputs=[leaderboard_table, stats_display]
)
# Add the load event at the very end, just before demo.launch()
demo.load(
fn=refresh_leaderboard,
inputs=None,
outputs=[leaderboard_table, stats_display]
)
# Add click handlers for metric buttons
custom_btn.click(
fn=lambda: set_example_metric("Custom"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
hallucination_btn.click(
fn=lambda: set_example_metric("Hallucination"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
precision_btn.click(
fn=lambda: set_example_metric("Precision"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
recall_btn.click(
fn=lambda: set_example_metric("Recall"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
coherence_btn.click(
fn=lambda: set_example_metric("Logical coherence"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
faithfulness_btn.click(
fn=lambda: set_example_metric("Faithfulness"),
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
# Set random metric at startup
demo.load(
fn=get_random_metric,
outputs=[eval_prompt, variable_rows[0][1], variable_rows[1][1]]
)
demo.launch()