Awiny's picture
first version submission
c3a1897
raw
history blame
25.3 kB
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model. """
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import os
import json
import logging
import math
import sys
from io import open
import torch
from torch import nn
import torch.utils.checkpoint as checkpoint
from .file_utils import cached_path
logger = logging.getLogger()
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
}
def qk2attn(query, key, attention_mask, gamma):
query = query / gamma
attention_scores = torch.matmul(query, key.transpose(-1, -2))
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
return attention_scores.softmax(dim=-1)
class QK2Attention(nn.Module):
def forward(self, query, key, attention_mask, gamma):
return qk2attn(query, key, attention_mask, gamma)
LayerNormClass = torch.nn.LayerNorm
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
self.qk2attn = QK2Attention()
def transpose_for_scores(self, x):
if torch._C._get_tracing_state():
# exporter is not smart enough to detect dynamic size for some paths
x = x.view(x.shape[0], -1, self.num_attention_heads, self.attention_head_size)
else:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, head_mask=None,
history_state=None):
if history_state is not None:
x_states = torch.cat([history_state, hidden_states], dim=1)
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(x_states)
mixed_value_layer = self.value(x_states)
else:
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_probs = self.qk2attn(query_layer, key_layer, attention_mask, math.sqrt(self.attention_head_size))
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
if not self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if not self.pre_norm:
hidden_states = self.LayerNorm(hidden_states + input_tensor)
else:
hidden_states = hidden_states + input_tensor
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
if self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask, head_mask=None,
history_state=None):
if self.pre_norm:
self_outputs = self.self(self.LayerNorm(input_tensor), attention_mask, head_mask,
self.layerNorm(history_state) if history_state else history_state)
else:
self_outputs = self.self(input_tensor, attention_mask, head_mask,
history_state)
attention_output = self.output(self_outputs[0], input_tensor)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
assert config.hidden_act == 'gelu', 'Please implement other activation functions'
self.intermediate_act_fn = _gelu_python
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if not self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
if not self.pre_norm:
hidden_states = self.LayerNorm(hidden_states + input_tensor)
else:
hidden_states = hidden_states + input_tensor
return hidden_states
class Mlp(nn.Module):
def __init__(self, config):
super().__init__()
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
self.intermediate = BertIntermediate(config)
if self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
self.output = BertOutput(config)
def forward(self, attention_output):
if not self.pre_norm:
intermediate_output = self.intermediate(attention_output)
else:
intermediate_output = self.intermediate(self.LayerNorm(attention_output))
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertLayer(nn.Module):
def __init__(self, config, use_act_checkpoint=True):
super(BertLayer, self).__init__()
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
self.use_mlp_wrapper = hasattr(config, 'use_mlp_wrapper') and config.use_mlp_wrapper
self.attention = BertAttention(config)
self.use_act_checkpoint = use_act_checkpoint
if self.use_mlp_wrapper:
self.mlp = Mlp(config)
else:
self.intermediate = BertIntermediate(config)
if self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask, head_mask=None,
history_state=None):
if self.use_act_checkpoint:
attention_outputs = checkpoint.checkpoint(self.attention, hidden_states,
attention_mask, head_mask, history_state)
else:
attention_outputs = self.attention(hidden_states, attention_mask,
head_mask, history_state)
attention_output = attention_outputs[0]
if self.use_mlp_wrapper:
layer_output = self.mlp(attention_output)
else:
if not self.pre_norm:
intermediate_output = self.intermediate(attention_output)
else:
intermediate_output = self.intermediate(self.LayerNorm(attention_output))
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
class BertEncoder(nn.Module):
def __init__(self, config, use_act_checkpoint=True):
super(BertEncoder, self).__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList([BertLayer(config, use_act_checkpoint=use_act_checkpoint) for _ in range(config.num_hidden_layers)])
self.pre_norm = hasattr(config, 'pre_norm') and config.pre_norm
if self.pre_norm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask, head_mask=None,
encoder_history_states=None):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
history_state = None if encoder_history_states is None else encoder_history_states[i]
layer_outputs = layer_module(
hidden_states, attention_mask,
(None if head_mask is None else head_mask[i]),
history_state,
)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.pre_norm:
hidden_states = self.LayerNorm(hidden_states)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs
CONFIG_NAME = "config.json"
class PretrainedConfig(object):
""" Base class for all configuration classes.
Handle a few common parameters and methods for loading/downloading/saving configurations.
"""
pretrained_config_archive_map = {}
def __init__(self, **kwargs):
self.finetuning_task = kwargs.pop('finetuning_task', None)
self.num_labels = kwargs.pop('num_labels', 2)
self.output_attentions = kwargs.pop('output_attentions', False)
self.output_hidden_states = kwargs.pop('output_hidden_states', False)
self.torchscript = kwargs.pop('torchscript', False)
def save_pretrained(self, save_directory):
""" Save a configuration object to a directory, so that it
can be re-loaded using the `from_pretrained(save_directory)` class method.
"""
assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"
# If we save using the predefined names, we can load using `from_pretrained`
output_config_file = os.path.join(save_directory, CONFIG_NAME)
self.to_json_file(output_config_file)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r""" Instantiate a PretrainedConfig from a pre-trained model configuration.
Params:
**pretrained_model_name_or_path**: either:
- a string with the `shortcut name` of a pre-trained model configuration to load from cache
or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
- a path to a `directory` containing a configuration file saved
using the `save_pretrained(save_directory)` method.
- a path or url to a saved configuration `file`.
**cache_dir**: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
**return_unused_kwargs**: (`optional`) bool:
- If False, then this function returns just the final configuration object.
- If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs`
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes:
ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
**kwargs**: (`optional`) dict:
Dictionary of key/value pairs with which to update the configuration object after loading.
- The values in kwargs of any keys which are configuration attributes will be used
to override the loaded values.
- Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
>>> config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
>>> config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
>>> config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
>>> assert config.output_attention == True
>>> config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
>>> foo=False, return_unused_kwargs=True)
>>> assert config.output_attention == True
>>> assert unused_kwargs == {'foo': False}
"""
cache_dir = kwargs.pop('cache_dir', None)
return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
elif os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
else:
config_file = pretrained_model_name_or_path
# redirect to the cache, if necessary
try:
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
except EnvironmentError:
if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
logger.error(
"Couldn't reach server at '{}' to download pretrained model configuration file.".format(
config_file))
else:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name_or_path,
', '.join(cls.pretrained_config_archive_map.keys()),
config_file))
return None
if resolved_config_file == config_file:
logger.info("loading configuration file {}".format(config_file))
else:
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
# Load config
config = cls.from_json_file(resolved_config_file)
# Update config with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
to_remove.append(key)
# add img_layer_norm_eps, use_img_layernorm
if "img_layer_norm_eps" in kwargs:
setattr(config, "img_layer_norm_eps", kwargs["img_layer_norm_eps"])
to_remove.append("img_layer_norm_eps")
if "use_img_layernorm" in kwargs:
setattr(config, "use_img_layernorm", kwargs["use_img_layernorm"])
to_remove.append("use_img_layernorm")
for key in to_remove:
kwargs.pop(key, None)
logger.info("Model config %s", config)
if return_unused_kwargs:
return config, kwargs
else:
return config
@classmethod
def from_dict(cls, json_object):
"""Constructs a `Config` from a Python dictionary of parameters."""
config = cls(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __eq__(self, other):
return self.__dict__ == other.__dict__
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path):
""" Save this instance to a json file."""
with open(json_file_path, "w", encoding='utf-8') as writer:
writer.write(self.to_json_string())
class BertConfig(PretrainedConfig):
r"""
:class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a
`BertModel`.
Arguments:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self,
vocab_size_or_config_json_file=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
**kwargs):
super(BertConfig, self).__init__(**kwargs)
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
def _gelu_python(x):
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))