|
import gradio |
|
import torch |
|
import numpy as np |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTextToWaveform |
|
|
|
|
|
asr_model = Wav2Vec2ForCTC.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text") |
|
asr_processor = Wav2Vec2Processor.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text") |
|
translation_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/saad-hausa-text-to-english-text") |
|
translation_model = AutoModelForSeq2SeqLM.from_pretrained("Baghdad99/saad-hausa-text-to-english-text", from_tf=True) |
|
tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts") |
|
tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts") |
|
|
|
|
|
def translate(audio_signal, sampling_rate): |
|
inputs = asr_processor(audio_signal, sampling_rate=sampling_rate, return_tensors="pt", padding=True) |
|
logits = asr_model(inputs.input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = asr_processor.decode(predicted_ids[0]) |
|
translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True)) |
|
translated_text = [translation_tokenizer.decode(t, skip_special_tokens=True) for t in translated] |
|
return translated_text |
|
|
|
def synthesise(translated_text): |
|
inputs = tts_tokenizer(translated_text, return_tensors='pt') |
|
audio = tts_model.generate(inputs['input_ids']) |
|
return audio |
|
|
|
def translate_speech(audio, sampling_rate): |
|
translated_text = translate(audio, sampling_rate) |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) |
|
return 16000, synthesised_speech |
|
|
|
|
|
iface = gradio.Interface(fn=translate_speech, inputs=gradio.inputs.Audio(source="microphone", type="numpy"), outputs="audio") |
|
iface.launch() |
|
|