|
import cv2 |
|
import gradio as gr |
|
import os |
|
from PIL import Image, ImageEnhance |
|
import numpy as np |
|
import torch |
|
from torch.autograd import Variable |
|
from torchvision import transforms |
|
import torch.nn.functional as F |
|
import matplotlib.pyplot as plt |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
os.system("git clone https://github.com/xuebinqin/DIS") |
|
os.system("mv DIS/IS-Net/* .") |
|
|
|
from data_loader_cache import normalize, im_reader, im_preprocess |
|
from models import * |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
if not os.path.exists("saved_models"): |
|
os.mkdir("saved_models") |
|
os.system("mv isnet.pth saved_models/") |
|
|
|
class GOSNormalize(object): |
|
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self, image): |
|
image = normalize(image, self.mean, self.std) |
|
return image |
|
|
|
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])]) |
|
|
|
def load_image(im_path, hypar): |
|
im = im_reader(im_path) |
|
im, im_shp = im_preprocess(im, hypar["cache_size"]) |
|
im = torch.divide(im, 255.0) |
|
shape = torch.from_numpy(np.array(im_shp)) |
|
return transform(im).unsqueeze(0), shape.unsqueeze(0) |
|
|
|
def build_model(hypar, device): |
|
net = hypar["model"] |
|
if hypar["model_digit"] == "half": |
|
net.half() |
|
for layer in net.modules(): |
|
if isinstance(layer, nn.BatchNorm2d): |
|
layer.float() |
|
|
|
net.to(device) |
|
if hypar["restore_model"] != "": |
|
net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device)) |
|
net.eval() |
|
return net |
|
|
|
def predict(net, inputs_val, shapes_val, hypar, device): |
|
net.eval() |
|
if hypar["model_digit"] == "full": |
|
inputs_val = inputs_val.type(torch.FloatTensor) |
|
else: |
|
inputs_val = inputs_val.type(torch.HalfTensor) |
|
|
|
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) |
|
ds_val = net(inputs_val_v)[0] |
|
pred_val = ds_val[0][0, :, :, :] |
|
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear')) |
|
|
|
ma = torch.max(pred_val) |
|
mi = torch.min(pred_val) |
|
pred_val = (pred_val - mi) / (ma - mi) |
|
|
|
if device == 'cuda': torch.cuda.empty_cache() |
|
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) |
|
|
|
hypar = {} |
|
hypar["model_path"] = "./saved_models" |
|
hypar["restore_model"] = "isnet.pth" |
|
hypar["interm_sup"] = False |
|
hypar["model_digit"] = "full" |
|
hypar["seed"] = 0 |
|
hypar["cache_size"] = [1024, 1024] |
|
hypar["input_size"] = [1024, 1024] |
|
hypar["crop_size"] = [1024, 1024] |
|
hypar["model"] = ISNetDIS() |
|
|
|
net = build_model(hypar, device) |
|
|
|
def inference(image): |
|
image_path = image |
|
image_tensor, orig_size = load_image(image_path, hypar) |
|
mask = predict(net, image_tensor, orig_size, hypar, device) |
|
pil_mask = Image.fromarray(mask).convert('L') |
|
im_rgb = Image.open(image).convert("RGB") |
|
im_rgba = im_rgb.copy() |
|
im_rgba.putalpha(pil_mask) |
|
return [im_rgba, pil_mask] |
|
|
|
|
|
def rotate_image(image, degrees): |
|
img = Image.open(image).rotate(degrees) |
|
return img |
|
|
|
def resize_image(image, width, height): |
|
img = Image.open(image).resize((width, height)) |
|
return img |
|
|
|
def convert_to_grayscale(image): |
|
img = Image.open(image).convert('L') |
|
return img |
|
|
|
def adjust_brightness(image, brightness_factor): |
|
img = Image.open(image) |
|
enhancer = ImageEnhance.Brightness(img) |
|
img_enhanced = enhancer.enhance(brightness_factor) |
|
return img_enhanced |
|
|
|
|
|
custom_css = """ |
|
body { |
|
background-color: #f0f0f0; |
|
} |
|
.gradio-container { |
|
max-width: 900px; |
|
margin: auto; |
|
background-color: #ffffff; |
|
padding: 20px; |
|
border-radius: 12px; |
|
box-shadow: 0px 4px 16px rgba(0, 0, 0, 0.2); |
|
} |
|
button.lg { |
|
background-color: #4CAF50; |
|
color: white; |
|
border: none; |
|
padding: 10px 20px; |
|
text-align: center; |
|
text-decoration: none; |
|
display: inline-block; |
|
font-size: 16px; |
|
margin: 4px 2px; |
|
transition-duration: 0.4s; |
|
cursor: pointer; |
|
border-radius: 8px; |
|
} |
|
button.lg:hover { |
|
background-color: #45a049; |
|
color: white; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=custom_css) as interface: |
|
gr.Markdown(f"# {title}") |
|
gr.Markdown("<h1 style='text-align: center;'>🚩 Image Processor with Brightness Adjustment 🚩</h1>") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type='filepath') |
|
rotate_button = gr.Button("Rotate Image") |
|
resize_button = gr.Button("Resize Image") |
|
grayscale_button = gr.Button("Convert to Grayscale") |
|
brightness_slider = gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Adjust Brightness") |
|
submit_button = gr.Button("Submit", variant="primary") |
|
clear_button = gr.Button("Clear", variant="secondary") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Output Image") |
|
mask_image = gr.Image(label="Mask") |
|
|
|
|
|
rotate_button.click(rotate_image, inputs=[input_image, gr.Slider(minimum=0, maximum=360, step=1, value=90, label="Rotation Degrees")], outputs=output_image) |
|
resize_button.click(resize_image, inputs=[input_image, gr.Number(value=512, label="Width"), gr.Number(value=512, label="Height")], outputs=output_image) |
|
grayscale_button.click(convert_to_grayscale, inputs=input_image, outputs=output_image) |
|
|
|
brightness_slider.change(adjust_brightness, inputs=[input_image, brightness_slider], outputs=output_image) |
|
|
|
submit_button.click(inference, inputs=input_image, outputs=[output_image, mask_image]) |
|
|
|
clear_button.click(lambda: (None, None, None), inputs=None, outputs=[input_image, output_image, mask_image]) |
|
|
|
interface.launch(share=True) |
|
|