File size: 16,640 Bytes
eac6bfb
 
6660e8c
eac6bfb
 
 
 
 
 
 
 
6660e8c
eac6bfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6660e8c
 
 
 
 
 
 
 
 
eac6bfb
 
 
 
 
 
 
6660e8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac6bfb
 
6660e8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac6bfb
6660e8c
eac6bfb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# interface.py

import gradio as gr
from models import BioprocessModel
import io
from PIL import Image
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from sympy import symbols, sympify, lambdify
import copy
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE

device = DEVICE
model_path = MODEL_PATH
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path).to(device).eval()

def generate_analysis(prompt, max_length=MAX_LENGTH):
    try:
        input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
        generated_ids = model.generate(
            input_ids=input_ids,
            max_length=max_length + len(input_ids[0]),
            temperature=TEMPERATURE,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            early_stopping=True
        )
        output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        analysis = output_text[len(prompt):].strip()
        return analysis
    except Exception as e:
        return f"An error occurred during analysis: {e}"

def parse_bounds(bounds_str, num_params):
    try:
        bounds = eval(f"[{bounds_str}]")
        if len(bounds) != num_params:
            raise ValueError
        lower_bounds = [b[0] for b in bounds]
        upper_bounds = [b[1] for b in bounds]
        return lower_bounds, upper_bounds
    except:
        lower_bounds = [-np.inf] * num_params
        upper_bounds = [np.inf] * num_params
        return lower_bounds, upper_bounds

def process_and_plot(
    file,
    biomass_eq1, biomass_eq2, biomass_eq3,
    biomass_param1, biomass_param2, biomass_param3,
    biomass_bound1, biomass_bound2, biomass_bound3,
    substrate_eq1, substrate_eq2, substrate_eq3,
    substrate_param1, substrate_param2, substrate_param3,
    substrate_bound1, substrate_bound2, substrate_bound3,
    product_eq1, product_eq2, product_eq3,
    product_param1, product_param2, product_param3,
    product_bound1, product_bound2, product_bound3,
    legend_position,
    show_legend,
    show_params,
    biomass_eq_count,
    substrate_eq_count,
    product_eq_count
):
    biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
    biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
    biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]

    substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
    substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
    substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]

    product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
    product_params = [product_param1, product_param2, product_param3][:product_eq_count]
    product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]

    df = pd.read_excel(file.name)
    time = df['Time'].values
    biomass_data = df['Biomass'].values
    substrate_data = df['Substrate'].values
    product_data = df['Product'].values

    biomass_results = []
    substrate_results = []
    product_results = []

    for i in range(len(biomass_eqs)):
        equation = biomass_eqs[i]
        params_str = biomass_params[i]
        bounds_str = biomass_bounds[i]

        model = BioprocessModel()
        model.set_model('biomass', equation, params_str)

        params = [param.strip() for param in params_str.split(',')]
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'biomass', time, biomass_data,
            bounds=(lower_bounds, upper_bounds)
        )
        biomass_results.append({
            'model': copy.deepcopy(model),
            'y_pred': y_pred,
            'equation': equation
        })

    biomass_model = biomass_results[0]['model']
    X_t = biomass_model.models['biomass']['function']
    biomass_params_values = list(biomass_model.params['biomass'].values())

    for i in range(len(substrate_eqs)):
        equation = substrate_eqs[i]
        params_str = substrate_params[i]
        bounds_str = substrate_bounds[i]

        model = BioprocessModel()

        t_symbol = symbols('t')
        expr_substrate = sympify(equation)
        substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')])
        substrate_func = lambdify(
            (t_symbol, *substrate_params_symbols),
            expr_substrate.subs('X(t)', X_t(t_symbol, *biomass_params_values)),
            'numpy'
        )
        model.models['substrate'] = {
            'function': substrate_func,
            'params': [param.strip() for param in params_str.split(',')]
        }

        params = model.models['substrate']['params']
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'substrate', time, substrate_data,
            bounds=(lower_bounds, upper_bounds)
        )
        substrate_results.append({
            'model': copy.deepcopy(model),
            'y_pred': y_pred,
            'equation': equation
        })

    for i in range(len(product_eqs)):
        equation = product_eqs[i]
        params_str = product_params[i]
        bounds_str = product_bounds[i]

        model = BioprocessModel()

        t_symbol = symbols('t')
        expr_product = sympify(equation)
        product_params_symbols = symbols([param.strip() for param in params_str.split(',')])
        product_func = lambdify(
            (t_symbol, *product_params_symbols),
            expr_product.subs('X(t)', X_t(t_symbol, *biomass_params_values)),
            'numpy'
        )
        model.models['product'] = {
            'function': product_func,
            'params': [param.strip() for param in params_str.split(',')]
        }

        params = model.models['product']['params']
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        y_pred = model.fit_model(
            'product', time, product_data,
            bounds=(lower_bounds, upper_bounds)
        )
        product_results.append({
            'model': copy.deepcopy(model),
            'y_pred': y_pred,
            'equation': equation
        })

    fig, axs = plt.subplots(3, 1, figsize=(10, 15))

    # Biomass Plot
    axs[0].plot(time, biomass_data, 'o', label='Biomass Data')
    for i, result in enumerate(biomass_results):
        axs[0].plot(time, result['y_pred'], '-', label=f'Biomass Model {i+1}')
    axs[0].set_xlabel('Time')
    axs[0].set_ylabel('Biomass')
    if show_legend:
        axs[0].legend(loc=legend_position)

    # Substrate Plot
    axs[1].plot(time, substrate_data, 'o', label='Substrate Data')
    for i, result in enumerate(substrate_results):
        axs[1].plot(time, result['y_pred'], '-', label=f'Substrate Model {i+1}')
    axs[1].set_xlabel('Time')
    axs[1].set_ylabel('Substrate')
    if show_legend:
        axs[1].legend(loc=legend_position)

    # Product Plot
    axs[2].plot(time, product_data, 'o', label='Product Data')
    for i, result in enumerate(product_results):
        axs[2].plot(time, result['y_pred'], '-', label=f'Product Model {i+1}')
    axs[2].set_xlabel('Time')
    axs[2].set_ylabel('Product')
    if show_legend:
        axs[2].legend(loc=legend_position)

    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    image = Image.open(buf)

    all_results = {
        'biomass_models': [],
        'substrate_models': [],
        'product_models': []
    }

    for i, result in enumerate(biomass_results):
        model_info = {
            'model_number': i + 1,
            'equation': result['equation'],
            'parameters': result['model'].params['biomass'],
            'R2': result['model'].r2['biomass'],
            'RMSE': result['model'].rmse['biomass']
        }
        all_results['biomass_models'].append(model_info)

    for i, result in enumerate(substrate_results):
        model_info = {
            'model_number': i + 1,
            'equation': result['equation'],
            'parameters': result['model'].params['substrate'],
            'R2': result['model'].r2['substrate'],
            'RMSE': result['model'].rmse['substrate']
        }
        all_results['substrate_models'].append(model_info)

    for i, result in enumerate(product_results):
        model_info = {
            'model_number': i + 1,
            'equation': result['equation'],
            'parameters': result['model'].params['product'],
            'R2': result['model'].r2['product'],
            'RMSE': result['model'].rmse['product']
        }
        all_results['product_models'].append(model_info)

    results_text = "Experimental Results:\n\n"

    results_text += "Biomass Models:\n"
    for model_info in all_results['biomass_models']:
        results_text += f"""
Model {model_info['model_number']}:
Equation: {model_info['equation']}
Parameters: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""

    results_text += "\nSubstrate Models:\n"
    for model_info in all_results['substrate_models']:
        results_text += f"""
Model {model_info['model_number']}:
Equation: {model_info['equation']}
Parameters: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""

    results_text += "\nProduct Models:\n"
    for model_info in all_results['product_models']:
        results_text += f"""
Model {model_info['model_number']}:
Equation: {model_info['equation']}
Parameters: {model_info['parameters']}
R²: {model_info['R2']:.4f}
RMSE: {model_info['RMSE']:.4f}
"""

    prompt = f"""
You are an expert in bioprocess modeling.

Analyze the following experimental results and provide a verdict on the quality of the models, suggesting improvements if necessary.

{results_text}

Your analysis should be detailed and professional.
"""
    analysis = generate_analysis(prompt)

    return [image], analysis

def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Bioprocess Modeling Application with Yi-Coder Integration")

        file_input = gr.File(label="Upload Excel File")

        MAX_EQUATIONS = 3
        biomass_equations = []
        biomass_params = []
        biomass_bounds = []
        substrate_equations = []
        substrate_params = []
        substrate_bounds = []
        product_equations = []
        product_params = []
        product_bounds = []

        def create_model_inputs(model_name, equations_list, params_list, bounds_list):
            with gr.Column():
                gr.Markdown(f"### {model_name} Models")
                for i in range(MAX_EQUATIONS):
                    with gr.Row(visible=(i == 0)) as row:
                        equation_input = gr.Textbox(
                            label=f"{model_name} Model {i+1} Equation",
                            placeholder="Enter equation in terms of t and parameters",
                            lines=1,
                            value="" if i > 0 else "Default equation"
                        )
                        params_input = gr.Textbox(
                            label=f"{model_name} Model {i+1} Parameters",
                            placeholder="Comma-separated parameters",
                            lines=1,
                            value="" if i > 0 else "Parameters"
                        )
                        bounds_input = gr.Textbox(
                            label=f"{model_name} Model {i+1} Bounds",
                            placeholder="(lower, upper) for each parameter",
                            lines=1
                        )
                        equations_list.append((row, equation_input))
                        params_list.append(params_input)
                        bounds_list.append(bounds_input)
                add_btn = gr.Button(f"Add {model_name} Equation")
                remove_btn = gr.Button(f"Remove {model_name} Equation")
                return add_btn, remove_btn

        with gr.Accordion("Model Definitions", open=True):
            with gr.Row():
                with gr.Column():
                    add_biomass_btn, remove_biomass_btn = create_model_inputs(
                        "Biomass", biomass_equations, biomass_params, biomass_bounds
                    )
                with gr.Column():
                    add_substrate_btn, remove_substrate_btn = create_model_inputs(
                        "Substrate", substrate_equations, substrate_params, substrate_bounds
                    )
                with gr.Column():
                    add_product_btn, remove_product_btn = create_model_inputs(
                        "Product", product_equations, product_params, product_bounds
                    )

        legend_position = gr.Radio(
            choices=["upper left", "upper right", "lower left", "lower right", "best"],
            label="Legend Position",
            value="best"
        )
        show_legend = gr.Checkbox(label="Show Legend", value=True)
        show_params = gr.Checkbox(label="Show Parameters", value=True)
        simulate_btn = gr.Button("Simulate")

        with gr.Row():
            output_gallery = gr.Gallery(label="Results", columns=2, height='auto')
            analysis_output = gr.Textbox(label="Yi-Coder Analysis", lines=15)

        biomass_eq_count = gr.Number(value=1, visible=False)
        substrate_eq_count = gr.Number(value=1, visible=False)
        product_eq_count = gr.Number(value=1, visible=False)

        def add_equation(equations_list, eq_count):
            eq_count = min(eq_count + 1, MAX_EQUATIONS)
            for i, (row, _) in enumerate(equations_list):
                row.visible = i < eq_count
            return [row.update(visible=row.visible) for row, _ in equations_list], eq_count

        def remove_equation(equations_list, eq_count):
            eq_count = max(eq_count - 1, 1)
            for i, (row, _) in enumerate(equations_list):
                row.visible = i < eq_count
            return [row.update(visible=row.visible) for row, _ in equations_list], eq_count

        add_biomass_btn.click(
            fn=lambda eq_count: add_equation(biomass_equations, eq_count),
            inputs=biomass_eq_count,
            outputs=[*[row for row, _ in biomass_equations], biomass_eq_count]
        )
        remove_biomass_btn.click(
            fn=lambda eq_count: remove_equation(biomass_equations, eq_count),
            inputs=biomass_eq_count,
            outputs=[*[row for row, _ in biomass_equations], biomass_eq_count]
        )

        add_substrate_btn.click(
            fn=lambda eq_count: add_equation(substrate_equations, eq_count),
            inputs=substrate_eq_count,
            outputs=[*[row for row, _ in substrate_equations], substrate_eq_count]
        )
        remove_substrate_btn.click(
            fn=lambda eq_count: remove_equation(substrate_equations, eq_count),
            inputs=substrate_eq_count,
            outputs=[*[row for row, _ in substrate_equations], substrate_eq_count]
        )

        add_product_btn.click(
            fn=lambda eq_count: add_equation(product_equations, eq_count),
            inputs=product_eq_count,
            outputs=[*[row for row, _ in product_equations], product_eq_count]
        )
        remove_product_btn.click(
            fn=lambda eq_count: remove_equation(product_equations, eq_count),
            inputs=product_eq_count,
            outputs=[*[row for row, _ in product_equations], product_eq_count]
        )

        simulate_inputs = [
            file_input,
            *[eq_input for row, eq_input in biomass_equations],
            *biomass_params,
            *biomass_bounds,
            *[eq_input for row, eq_input in substrate_equations],
            *substrate_params,
            *substrate_bounds,
            *[eq_input for row, eq_input in product_equations],
            *product_params,
            *product_bounds,
            legend_position,
            show_legend,
            show_params,
            biomass_eq_count,
            substrate_eq_count,
            product_eq_count
        ]

        simulate_btn.click(
            fn=process_and_plot,
            inputs=simulate_inputs,
            outputs=[output_gallery, analysis_output]
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()