File size: 9,621 Bytes
7f0e5b8
 
 
 
 
 
 
 
 
be4582c
7f0e5b8
54bc1ed
 
 
 
 
 
 
 
 
 
 
 
7f0e5b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54bc1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0e5b8
 
eac6bfb
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612f2cd
 
eac6bfb
612f2cd
f5a37da
612f2cd
 
 
f5a37da
 
 
 
612f2cd
 
 
 
 
f5a37da
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91dc2c
 
 
881af71
 
 
 
 
 
e91dc2c
be4582c
e91dc2c
 
881af71
 
 
 
e91dc2c
 
 
 
 
 
 
 
 
 
 
 
 
881af71
 
 
 
 
 
 
e91dc2c
be4582c
e91dc2c
 
881af71
e91dc2c
881af71
 
e91dc2c
 
 
 
 
 
 
 
 
 
 
 
 
881af71
 
 
 
 
 
 
e91dc2c
be4582c
e91dc2c
 
881af71
e91dc2c
881af71
 
e91dc2c
 
 
 
 
 
 
 
 
 
 
 
 
881af71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54bc1ed
881af71
a360292
 
54bc1ed
 
a360292
54bc1ed
 
a360292
54bc1ed
 
a360292
 
54bc1ed
 
 
881af71
e91dc2c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# interface.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import io

from bioprocess_model import BioprocessModel
from decorators import gpu_decorator  # Asegúrate de que la ruta es correcta

# Nuevas importaciones para Yi-Coder
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Inicialización del modelo Yi-Coder
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = "01-ai/Yi-Coder-9B-Chat"

# Carga del tokenizer y modelo
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").to(device).eval()

def parse_bounds(bounds_str, num_params):
    try:
        # Reemplazar 'inf' por 'np.inf' si el usuario lo escribió así
        bounds_str = bounds_str.replace('inf', 'np.inf')
        # Evaluar la cadena de límites
        bounds = eval(f"[{bounds_str}]")
        if len(bounds) != num_params:
            raise ValueError("Número de límites no coincide con el número de parámetros.")
        lower_bounds = [b[0] for b in bounds]
        upper_bounds = [b[1] for b in bounds]
        return lower_bounds, upper_bounds
    except Exception as e:
        print(f"Error al parsear los límites: {e}. Usando límites por defecto.")
        lower_bounds = [-np.inf] * num_params
        upper_bounds = [np.inf] * num_params
        return lower_bounds, upper_bounds

@gpu_decorator(duration=300)
def generate_analysis(prompt, max_length=1024, device=None):
    """
    Genera un análisis utilizando el modelo Yi-Coder-9B-Chat.
    """
    try:
        inputs = tokenizer(prompt, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=max_length,
                eos_token_id=tokenizer.eos_token_id,
                pad_token_id=tokenizer.eos_token_id
            )
        analysis = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return analysis
    except Exception as e:
        print(f"Error al generar el análisis con Yi-Coder: {e}. Usando análisis por defecto.")
        return "Análisis generado por el modelo de lenguaje."

@gpu_decorator(duration=600)  # Ajusta la duración según tus necesidades
def process_and_plot(
    file,
    biomass_eq1, biomass_eq2, biomass_eq3,
    biomass_param1, biomass_param2, biomass_param3,
    biomass_bound1, biomass_bound2, biomass_bound3,
    substrate_eq1, substrate_eq2, substrate_eq3,
    substrate_param1, substrate_param2, substrate_param3,
    substrate_bound1, substrate_bound2, substrate_bound3,
    product_eq1, product_eq2, product_eq3,
    product_param1, product_param2, product_param3,
    product_bound1, product_bound2, product_bound3,
    legend_position,
    show_legend,
    show_params,
    biomass_eq_count,
    substrate_eq_count,
    product_eq_count,
    device=None
):
    # Leer el archivo Excel
    df = pd.read_excel(file.name)
    
    # Verificar que las columnas necesarias estén presentes
    expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
    for col in expected_columns:
        if col not in df.columns:
            raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")

    # Asignar los datos desde las columnas
    time = df['Tiempo'].values
    biomass_data = df['Biomasa'].values
    substrate_data = df['Sustrato'].values
    product_data = df['Producto'].values

    # Convierte los contadores a enteros
    biomass_eq_count = int(biomass_eq_count)
    substrate_eq_count = int(substrate_eq_count)
    product_eq_count = int(product_eq_count)

    # Recolecta las ecuaciones, parámetros y límites según los contadores
    biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
    biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
    biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]

    substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
    substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
    substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]

    product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
    product_params = [product_param1, product_param2, product_param3][:product_eq_count]
    product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]

    biomass_results = []
    substrate_results = []
    product_results = []

    # Inicializar el modelo principal
    main_model = BioprocessModel()

    # Ajusta los modelos de Biomasa
    for i in range(len(biomass_eqs)):
        equation = biomass_eqs[i]
        params_str = biomass_params[i]
        bounds_str = biomass_bounds[i]

        try:
            main_model.set_model_biomass(equation, params_str)
        except ValueError as ve:
            raise ValueError(f"Error en la configuración del modelo de biomasa {i+1}: {ve}")

        params = [param.strip() for param in params_str.split(',')]
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        try:
            y_pred = main_model.fit_model(
                'biomass', time, biomass_data,
                bounds=(lower_bounds, upper_bounds)
            )
            biomass_results.append({
                'model': main_model,
                'y_pred': y_pred,
                'equation': equation,
                'params': main_model.params['biomass']
            })
        except Exception as e:
            raise RuntimeError(f"Error al ajustar el modelo de biomasa {i+1}: {e}")

    # Ajusta los modelos de Sustrato
    for i in range(len(substrate_eqs)):
        equation = substrate_eqs[i]
        params_str = substrate_params[i]
        bounds_str = substrate_bounds[i]

        try:
            main_model.set_model_substrate(equation, params_str)
        except ValueError as ve:
            raise ValueError(f"Error en la configuración del modelo de sustrato {i+1}: {ve}")

        params = [param.strip() for param in params_str.split(',')]
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        try:
            y_pred = main_model.fit_model(
                'substrate', time, substrate_data,
                bounds=(lower_bounds, upper_bounds)
            )
            substrate_results.append({
                'model': main_model,
                'y_pred': y_pred,
                'equation': equation,
                'params': main_model.params['substrate']
            })
        except Exception as e:
            raise RuntimeError(f"Error al ajustar el modelo de sustrato {i+1}: {e}")

    # Ajusta los modelos de Producto
    for i in range(len(product_eqs)):
        equation = product_eqs[i]
        params_str = product_params[i]
        bounds_str = product_bounds[i]

        try:
            main_model.set_model_product(equation, params_str)
        except ValueError as ve:
            raise ValueError(f"Error en la configuración del modelo de producto {i+1}: {ve}")

        params = [param.strip() for param in params_str.split(',')]
        lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))

        try:
            y_pred = main_model.fit_model(
                'product', time, product_data,
                bounds=(lower_bounds, upper_bounds)
            )
            product_results.append({
                'model': main_model,
                'y_pred': y_pred,
                'equation': equation,
                'params': main_model.params['product']
            })
        except Exception as e:
            raise RuntimeError(f"Error al ajustar el modelo de producto {i+1}: {e}")

    # Genera las gráficas
    fig, axs = plt.subplots(3, 1, figsize=(10, 15))

    # Gráfica de Biomasa
    axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
    for i, result in enumerate(biomass_results):
        axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
    axs[0].set_xlabel('Tiempo')
    axs[0].set_ylabel('Biomasa')
    if show_legend:
        axs[0].legend(loc=legend_position)

    # Gráfica de Sustrato
    axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
    for i, result in enumerate(substrate_results):
        axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
    axs[1].set_xlabel('Tiempo')
    axs[1].set_ylabel('Sustrato')
    if show_legend:
        axs[1].legend(loc=legend_position)

    # Gráfica de Producto
    axs[2].plot(time, product_data, 'o', label='Datos de Producto')
    for i, result in enumerate(product_results):
        axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
    axs[2].set_xlabel('Tiempo')
    axs[2].set_ylabel('Producto')
    if show_legend:
        axs[2].legend(loc=legend_position)

    plt.tight_layout()
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    image = Image.open(buf)

    # Construcción del prompt para Yi-Coder
    prompt = f"""
Eres un experto en modelado de bioprocesos.
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.

### Biomasa:
{biomass_results}

### Sustrato:
{substrate_results}

### Producto:
{product_results}
"""

    # Generar el análisis utilizando Yi-Coder
    analysis = generate_analysis(prompt, max_length=1024, device=device)

    return image, analysis