|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from scipy.integrate import odeint |
|
from scipy.optimize import curve_fit |
|
from sklearn.metrics import mean_squared_error |
|
import seaborn as sns |
|
|
|
class BioprocessModel: |
|
def __init__(self): |
|
self.params = {} |
|
self.r2 = {} |
|
self.rmse = {} |
|
self.datax = [] |
|
self.datas = [] |
|
self.datap = [] |
|
self.dataxp = [] |
|
self.datasp = [] |
|
self.datapp = [] |
|
self.datax_std = [] |
|
self.datas_std = [] |
|
self.datap_std = [] |
|
|
|
@staticmethod |
|
def logistic(time, xo, xm, um): |
|
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) |
|
|
|
@staticmethod |
|
def substrate(time, so, p, q, xo, xm, um): |
|
return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \ |
|
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time)))) |
|
|
|
@staticmethod |
|
def product(time, po, alpha, beta, xo, xm, um): |
|
return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \ |
|
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time)))) |
|
|
|
@staticmethod |
|
def logistic_diff(X, t, params): |
|
xo, xm, um = params |
|
dXdt = um * X * (1 - X / xm) |
|
return dXdt |
|
|
|
def substrate_diff(self, S, t, params, biomass_params, X_func): |
|
so, p, q = params |
|
xo, xm, um = biomass_params |
|
X_t = X_func(t) |
|
dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t |
|
return dSdt |
|
|
|
def product_diff(self, P, t, params, biomass_params, X_func): |
|
po, alpha, beta = params |
|
xo, xm, um = biomass_params |
|
X_t = X_func(t) |
|
dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t |
|
return dPdt |
|
|
|
def process_data(self, df): |
|
biomass_cols = [col for col in df.columns if 'Biomasa' in col] |
|
substrate_cols = [col for col in df.columns if 'Sustrato' in col] |
|
product_cols = [col for col in df.columns if 'Producto' in col] |
|
|
|
time_col = [col for col in df.columns if 'Tiempo' in col][0] |
|
time = df[time_col].values |
|
|
|
data_biomass = np.array([df[col].values for col in biomass_cols]) |
|
self.datax.append(data_biomass) |
|
self.dataxp.append(np.mean(data_biomass, axis=0)) |
|
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1)) |
|
|
|
data_substrate = np.array([df[col].values for col in substrate_cols]) |
|
self.datas.append(data_substrate) |
|
self.datasp.append(np.mean(data_substrate, axis=0)) |
|
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1)) |
|
|
|
data_product = np.array([df[col].values for col in product_cols]) |
|
self.datap.append(data_product) |
|
self.datapp.append(np.mean(data_product, axis=0)) |
|
self.datap_std.append(np.std(data_product, axis=0, ddof=1)) |
|
|
|
self.time = time |
|
|
|
def fit_model(self, model_type='logistic'): |
|
if model_type == 'logistic': |
|
self.fit_biomass = self.fit_biomass_logistic |
|
self.fit_substrate = self.fit_substrate_logistic |
|
self.fit_product = self.fit_product_logistic |
|
|
|
def fit_biomass_logistic(self, time, biomass, bounds): |
|
popt, _ = curve_fit(self.logistic, time, biomass, bounds=bounds, maxfev=10000) |
|
self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]} |
|
y_pred = self.logistic(time, *popt) |
|
self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2)) |
|
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred)) |
|
return y_pred |
|
|
|
def fit_substrate_logistic(self, time, substrate, biomass_params, bounds): |
|
popt, _ = curve_fit(lambda t, so, p, q: self.substrate(t, so, p, q, *biomass_params.values()), |
|
time, substrate, bounds=bounds) |
|
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]} |
|
y_pred = self.substrate(time, *popt, *biomass_params.values()) |
|
self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2)) |
|
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred)) |
|
return y_pred |
|
|
|
def fit_product_logistic(self, time, product, biomass_params, bounds): |
|
popt, _ = curve_fit(lambda t, po, alpha, beta: self.product(t, po, alpha, beta, *biomass_params.values()), |
|
time, product, bounds=bounds) |
|
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]} |
|
y_pred = self.product(time, *popt, *biomass_params.values()) |
|
self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2)) |
|
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred)) |
|
return y_pred |
|
|
|
def plot_combined_results(self, time, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std=None, substrate_std=None, product_std=None, |
|
experiment_name='', legend_position='best', params_position='upper right', |
|
show_legend=True, show_params=True, |
|
style='whitegrid', line_color='#0000FF', point_color='#000000', |
|
line_style='-', marker_style='o'): |
|
sns.set_style(style) |
|
|
|
fig, ax1 = plt.subplots(figsize=(10, 7)) |
|
ax1.set_xlabel('Tiempo') |
|
ax1.set_ylabel('Biomasa', color=line_color) |
|
|
|
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)') |
|
ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)') |
|
ax1.tick_params(axis='y', labelcolor=line_color) |
|
|
|
ax2 = ax1.twinx() |
|
ax2.set_ylabel('Sustrato', color='green') |
|
ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)') |
|
ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)') |
|
ax2.tick_params(axis='y', labelcolor='green') |
|
|
|
ax3 = ax1.twinx() |
|
ax3.spines["right"].set_position(("axes", 1.1)) |
|
ax3.set_ylabel('Producto', color='red') |
|
ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)') |
|
ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)') |
|
ax3.tick_params(axis='y', labelcolor='red') |
|
|
|
fig.tight_layout() |
|
return fig |
|
|