Spaces:
Sleeping
Sleeping
# pinecone_utils.py | |
import pinecone | |
from config import PINECONE_API_KEY, PINECONE_ENVIRONMENT, INDEX_NAME, CONTEXT_FIELDS | |
import torch | |
# Conectar a Pinecone | |
def connect_to_pinecone(): | |
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT) | |
index = pinecone.Index(INDEX_NAME) | |
return index | |
# Realizar búsqueda vectorial | |
def vector_search(query, embedding_model, index): | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Generar el embedding utilizando el modelo de embeddings | |
xq = embedding_model.encode(query, convert_to_tensor=True, device=device) | |
# Convertir el tensor a lista | |
xq = xq.cpu().tolist() | |
# Realizar búsqueda vectorial en el índice de Pinecone | |
res = index.query(vector=xq, top_k=3, include_metadata=True) | |
if res and res['matches']: | |
return [ | |
{ | |
'content': ' '.join(f"{k}: {v}" for k, v in match['metadata'].items() if k in CONTEXT_FIELDS and k != 'Tag'), | |
'metadata': match['metadata'], | |
'score': match.get('score', 0) | |
} | |
for match in res['matches'] | |
if 'metadata' in match | |
] | |
return [] | |