RxnIM / molscribe /dataset.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
import os
import cv2
import time
import random
import re
import string
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence
import albumentations as A
from albumentations.pytorch import ToTensorV2
from .indigo import Indigo
from .indigo.renderer import IndigoRenderer
from .augment import SafeRotate, CropWhite, PadWhite, SaltAndPepperNoise
from .utils import FORMAT_INFO
from .tokenizer import PAD_ID
from .chemistry import get_num_atoms, normalize_nodes
from .constants import RGROUP_SYMBOLS, SUBSTITUTIONS, ELEMENTS, COLORS
cv2.setNumThreads(1)
INDIGO_HYGROGEN_PROB = 0.2
INDIGO_FUNCTIONAL_GROUP_PROB = 0.8
INDIGO_CONDENSED_PROB = 0.5
INDIGO_RGROUP_PROB = 0.5
INDIGO_COMMENT_PROB = 0.3
INDIGO_DEARMOTIZE_PROB = 0.8
INDIGO_COLOR_PROB = 0.2
def get_transforms(input_size, augment=True, rotate=True, debug=False):
trans_list = []
if augment and rotate:
trans_list.append(SafeRotate(limit=90, border_mode=cv2.BORDER_CONSTANT, value=(255, 255, 255)))
trans_list.append(CropWhite(pad=5))
if augment:
trans_list += [
# NormalizedGridDistortion(num_steps=10, distort_limit=0.3),
A.CropAndPad(percent=[-0.01, 0.00], keep_size=False, p=0.5),
PadWhite(pad_ratio=0.4, p=0.2),
A.Downscale(scale_min=0.2, scale_max=0.5, interpolation=3),
A.Blur(),
A.GaussNoise(),
SaltAndPepperNoise(num_dots=20, p=0.5)
]
trans_list.append(A.Resize(input_size, input_size))
if not debug:
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
trans_list += [
A.ToGray(p=1),
A.Normalize(mean=mean, std=std),
ToTensorV2(),
]
return A.Compose(trans_list, keypoint_params=A.KeypointParams(format='xy', remove_invisible=False))
def add_functional_group(indigo, mol, debug=False):
if random.random() > INDIGO_FUNCTIONAL_GROUP_PROB:
return mol
# Delete functional group and add a pseudo atom with its abbrv
substitutions = [sub for sub in SUBSTITUTIONS]
random.shuffle(substitutions)
for sub in substitutions:
query = indigo.loadSmarts(sub.smarts)
matcher = indigo.substructureMatcher(mol)
matched_atoms_ids = set()
for match in matcher.iterateMatches(query):
if random.random() < sub.probability or debug:
atoms = []
atoms_ids = set()
for item in query.iterateAtoms():
atom = match.mapAtom(item)
atoms.append(atom)
atoms_ids.add(atom.index())
if len(matched_atoms_ids.intersection(atoms_ids)) > 0:
continue
abbrv = random.choice(sub.abbrvs)
superatom = mol.addAtom(abbrv)
for atom in atoms:
for nei in atom.iterateNeighbors():
if nei.index() not in atoms_ids:
if nei.symbol() == 'H':
# indigo won't match explicit hydrogen, so remove them explicitly
atoms_ids.add(nei.index())
else:
superatom.addBond(nei, nei.bond().bondOrder())
for id in atoms_ids:
mol.getAtom(id).remove()
matched_atoms_ids = matched_atoms_ids.union(atoms_ids)
return mol
def add_explicit_hydrogen(indigo, mol):
atoms = []
for atom in mol.iterateAtoms():
try:
hs = atom.countImplicitHydrogens()
if hs > 0:
atoms.append((atom, hs))
except:
continue
if len(atoms) > 0 and random.random() < INDIGO_HYGROGEN_PROB:
atom, hs = random.choice(atoms)
for i in range(hs):
h = mol.addAtom('H')
h.addBond(atom, 1)
return mol
def add_rgroup(indigo, mol, smiles):
atoms = []
for atom in mol.iterateAtoms():
try:
hs = atom.countImplicitHydrogens()
if hs > 0:
atoms.append(atom)
except:
continue
if len(atoms) > 0 and '*' not in smiles:
if random.random() < INDIGO_RGROUP_PROB:
atom_idx = random.choice(range(len(atoms)))
atom = atoms[atom_idx]
atoms.pop(atom_idx)
symbol = random.choice(RGROUP_SYMBOLS)
r = mol.addAtom(symbol)
r.addBond(atom, 1)
return mol
def get_rand_symb():
symb = random.choice(ELEMENTS)
if random.random() < 0.1:
symb += random.choice(string.ascii_lowercase)
if random.random() < 0.1:
symb += random.choice(string.ascii_uppercase)
if random.random() < 0.1:
symb = f'({gen_rand_condensed()})'
return symb
def get_rand_num():
if random.random() < 0.9:
if random.random() < 0.8:
return ''
else:
return str(random.randint(2, 9))
else:
return '1' + str(random.randint(2, 9))
def gen_rand_condensed():
tokens = []
for i in range(5):
if i >= 1 and random.random() < 0.8:
break
tokens.append(get_rand_symb())
tokens.append(get_rand_num())
return ''.join(tokens)
def add_rand_condensed(indigo, mol):
atoms = []
for atom in mol.iterateAtoms():
try:
hs = atom.countImplicitHydrogens()
if hs > 0:
atoms.append(atom)
except:
continue
if len(atoms) > 0 and random.random() < INDIGO_CONDENSED_PROB:
atom = random.choice(atoms)
symbol = gen_rand_condensed()
r = mol.addAtom(symbol)
r.addBond(atom, 1)
return mol
def generate_output_smiles(indigo, mol):
# TODO: if using mol.canonicalSmiles(), explicit H will be removed
smiles = mol.smiles()
mol = indigo.loadMolecule(smiles)
if '*' in smiles:
part_a, part_b = smiles.split(' ', maxsplit=1)
part_b = re.search(r'\$.*\$', part_b).group(0)[1:-1]
symbols = [t for t in part_b.split(';') if len(t) > 0]
output = ''
cnt = 0
for i, c in enumerate(part_a):
if c != '*':
output += c
else:
output += f'[{symbols[cnt]}]'
cnt += 1
return mol, output
else:
if ' ' in smiles:
# special cases with extension
smiles = smiles.split(' ')[0]
return mol, smiles
def add_comment(indigo):
if random.random() < INDIGO_COMMENT_PROB:
indigo.setOption('render-comment', str(random.randint(1, 20)) + random.choice(string.ascii_letters))
indigo.setOption('render-comment-font-size', random.randint(40, 60))
indigo.setOption('render-comment-alignment', random.choice([0, 0.5, 1]))
indigo.setOption('render-comment-position', random.choice(['top', 'bottom']))
indigo.setOption('render-comment-offset', random.randint(2, 30))
def add_color(indigo, mol):
if random.random() < INDIGO_COLOR_PROB:
indigo.setOption('render-coloring', True)
if random.random() < INDIGO_COLOR_PROB:
indigo.setOption('render-base-color', random.choice(list(COLORS.values())))
if random.random() < INDIGO_COLOR_PROB:
if random.random() < 0.5:
indigo.setOption('render-highlight-color-enabled', True)
indigo.setOption('render-highlight-color', random.choice(list(COLORS.values())))
if random.random() < 0.5:
indigo.setOption('render-highlight-thickness-enabled', True)
for atom in mol.iterateAtoms():
if random.random() < 0.1:
atom.highlight()
return mol
def get_graph(mol, image, shuffle_nodes=False, pseudo_coords=False):
mol.layout()
coords, symbols = [], []
index_map = {}
atoms = [atom for atom in mol.iterateAtoms()]
if shuffle_nodes:
random.shuffle(atoms)
for i, atom in enumerate(atoms):
if pseudo_coords:
x, y, z = atom.xyz()
else:
x, y = atom.coords()
coords.append([x, y])
symbols.append(atom.symbol())
index_map[atom.index()] = i
if pseudo_coords:
coords = normalize_nodes(np.array(coords))
h, w, _ = image.shape
coords[:, 0] = coords[:, 0] * w
coords[:, 1] = coords[:, 1] * h
n = len(symbols)
edges = np.zeros((n, n), dtype=int)
for bond in mol.iterateBonds():
s = index_map[bond.source().index()]
t = index_map[bond.destination().index()]
# 1/2/3/4 : single/double/triple/aromatic
edges[s, t] = bond.bondOrder()
edges[t, s] = bond.bondOrder()
if bond.bondStereo() in [5, 6]:
edges[s, t] = bond.bondStereo()
edges[t, s] = 11 - bond.bondStereo()
graph = {
'coords': coords,
'symbols': symbols,
'edges': edges,
'num_atoms': len(symbols)
}
return graph
def generate_indigo_image(smiles, mol_augment=True, default_option=False, shuffle_nodes=False, pseudo_coords=False,
include_condensed=True, debug=False):
indigo = Indigo()
renderer = IndigoRenderer(indigo)
indigo.setOption('render-output-format', 'png')
indigo.setOption('render-background-color', '1,1,1')
indigo.setOption('render-stereo-style', 'none')
indigo.setOption('render-label-mode', 'hetero')
indigo.setOption('render-font-family', 'Arial')
if not default_option:
thickness = random.uniform(0.5, 2) # limit the sum of the following two parameters to be smaller than 4
indigo.setOption('render-relative-thickness', thickness)
indigo.setOption('render-bond-line-width', random.uniform(1, 4 - thickness))
if random.random() < 0.5:
indigo.setOption('render-font-family', random.choice(['Arial', 'Times', 'Courier', 'Helvetica']))
indigo.setOption('render-label-mode', random.choice(['hetero', 'terminal-hetero']))
indigo.setOption('render-implicit-hydrogens-visible', random.choice([True, False]))
if random.random() < 0.1:
indigo.setOption('render-stereo-style', 'old')
if random.random() < 0.2:
indigo.setOption('render-atom-ids-visible', True)
try:
mol = indigo.loadMolecule(smiles)
if mol_augment:
if random.random() < INDIGO_DEARMOTIZE_PROB:
mol.dearomatize()
else:
mol.aromatize()
smiles = mol.canonicalSmiles()
add_comment(indigo)
mol = add_explicit_hydrogen(indigo, mol)
mol = add_rgroup(indigo, mol, smiles)
if include_condensed:
mol = add_rand_condensed(indigo, mol)
mol = add_functional_group(indigo, mol, debug)
mol = add_color(indigo, mol)
mol, smiles = generate_output_smiles(indigo, mol)
buf = renderer.renderToBuffer(mol)
img = cv2.imdecode(np.asarray(bytearray(buf), dtype=np.uint8), 1) # decode buffer to image
# img = np.repeat(np.expand_dims(img, 2), 3, axis=2) # expand to RGB
graph = get_graph(mol, img, shuffle_nodes, pseudo_coords)
success = True
except Exception:
if debug:
raise Exception
img = np.array([[[255., 255., 255.]] * 10] * 10).astype(np.float32)
graph = {}
success = False
return img, smiles, graph, success
class TrainDataset(Dataset):
def __init__(self, args, df, tokenizer, split='train', dynamic_indigo=False):
super().__init__()
self.df = df
self.args = args
self.tokenizer = tokenizer
if 'file_path' in df.columns:
self.file_paths = df['file_path'].values
if not self.file_paths[0].startswith(args.data_path):
self.file_paths = [os.path.join(args.data_path, path) for path in df['file_path']]
self.smiles = df['SMILES'].values if 'SMILES' in df.columns else None
self.formats = args.formats
self.labelled = (split == 'train')
if self.labelled:
self.labels = {}
for format_ in self.formats:
if format_ in ['atomtok', 'inchi']:
field = FORMAT_INFO[format_]['name']
if field in df.columns:
self.labels[format_] = df[field].values
self.transform = get_transforms(args.input_size,
augment=(self.labelled and args.augment))
# self.fix_transform = A.Compose([A.Transpose(p=1), A.VerticalFlip(p=1)])
self.dynamic_indigo = (dynamic_indigo and split == 'train')
if self.labelled and not dynamic_indigo and args.coords_file is not None:
if args.coords_file == 'aux_file':
self.coords_df = df
self.pseudo_coords = True
else:
self.coords_df = pd.read_csv(args.coords_file)
self.pseudo_coords = False
else:
self.coords_df = None
self.pseudo_coords = args.pseudo_coords
def __len__(self):
return len(self.df)
def image_transform(self, image, coords=[], renormalize=False):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # .astype(np.float32)
augmented = self.transform(image=image, keypoints=coords)
image = augmented['image']
if len(coords) > 0:
coords = np.array(augmented['keypoints'])
if renormalize:
coords = normalize_nodes(coords, flip_y=False)
else:
_, height, width = image.shape
coords[:, 0] = coords[:, 0] / width
coords[:, 1] = coords[:, 1] / height
coords = np.array(coords).clip(0, 1)
return image, coords
return image
def __getitem__(self, idx):
try:
return self.getitem(idx)
except Exception as e:
with open(os.path.join(self.args.save_path, f'error_dataset_{int(time.time())}.log'), 'w') as f:
f.write(str(e))
raise e
def getitem(self, idx):
ref = {}
if self.dynamic_indigo:
begin = time.time()
image, smiles, graph, success = generate_indigo_image(
self.smiles[idx], mol_augment=self.args.mol_augment, default_option=self.args.default_option,
shuffle_nodes=self.args.shuffle_nodes, pseudo_coords=self.pseudo_coords,
include_condensed=self.args.include_condensed)
# raw_image = image
end = time.time()
if idx < 30 and self.args.save_image:
path = os.path.join(self.args.save_path, 'images')
os.makedirs(path, exist_ok=True)
cv2.imwrite(os.path.join(path, f'{idx}.png'), image)
if not success:
return idx, None, {}
image, coords = self.image_transform(image, graph['coords'], renormalize=self.pseudo_coords)
graph['coords'] = coords
ref['time'] = end - begin
if 'atomtok' in self.formats:
max_len = FORMAT_INFO['atomtok']['max_len']
label = self.tokenizer['atomtok'].text_to_sequence(smiles, tokenized=False)
ref['atomtok'] = torch.LongTensor(label[:max_len])
if 'edges' in self.formats and 'atomtok_coords' not in self.formats and 'chartok_coords' not in self.formats:
ref['edges'] = torch.tensor(graph['edges'])
if 'atomtok_coords' in self.formats:
self._process_atomtok_coords(idx, ref, smiles, graph['coords'], graph['edges'],
mask_ratio=self.args.mask_ratio)
if 'chartok_coords' in self.formats:
self._process_chartok_coords(idx, ref, smiles, graph['coords'], graph['edges'],
mask_ratio=self.args.mask_ratio)
return idx, image, ref
else:
file_path = self.file_paths[idx]
image = cv2.imread(file_path)
if image is None:
image = np.array([[[255., 255., 255.]] * 10] * 10).astype(np.float32)
print(file_path, 'not found!')
if self.coords_df is not None:
h, w, _ = image.shape
coords = np.array(eval(self.coords_df.loc[idx, 'node_coords']))
if self.pseudo_coords:
coords = normalize_nodes(coords)
coords[:, 0] = coords[:, 0] * w
coords[:, 1] = coords[:, 1] * h
image, coords = self.image_transform(image, coords, renormalize=self.pseudo_coords)
else:
image = self.image_transform(image)
coords = None
if self.labelled:
smiles = self.smiles[idx]
if 'atomtok' in self.formats:
max_len = FORMAT_INFO['atomtok']['max_len']
label = self.tokenizer['atomtok'].text_to_sequence(smiles, False)
ref['atomtok'] = torch.LongTensor(label[:max_len])
if 'atomtok_coords' in self.formats:
if coords is not None:
self._process_atomtok_coords(idx, ref, smiles, coords, mask_ratio=0)
else:
self._process_atomtok_coords(idx, ref, smiles, mask_ratio=1)
if 'chartok_coords' in self.formats:
if coords is not None:
self._process_chartok_coords(idx, ref, smiles, coords, mask_ratio=0)
else:
self._process_chartok_coords(idx, ref, smiles, mask_ratio=1)
if self.args.predict_coords and ('atomtok_coords' in self.formats or 'chartok_coords' in self.formats):
smiles = self.smiles[idx]
if 'atomtok_coords' in self.formats:
self._process_atomtok_coords(idx, ref, smiles, mask_ratio=1)
if 'chartok_coords' in self.formats:
self._process_chartok_coords(idx, ref, smiles, mask_ratio=1)
return idx, image, ref
def _process_atomtok_coords(self, idx, ref, smiles, coords=None, edges=None, mask_ratio=0):
max_len = FORMAT_INFO['atomtok_coords']['max_len']
tokenizer = self.tokenizer['atomtok_coords']
if smiles is None or type(smiles) is not str:
smiles = ""
label, indices = tokenizer.smiles_to_sequence(smiles, coords, mask_ratio=mask_ratio)
ref['atomtok_coords'] = torch.LongTensor(label[:max_len])
indices = [i for i in indices if i < max_len]
ref['atom_indices'] = torch.LongTensor(indices)
if tokenizer.continuous_coords:
if coords is not None:
ref['coords'] = torch.tensor(coords)
else:
ref['coords'] = torch.ones(len(indices), 2) * -1.
if edges is not None:
ref['edges'] = torch.tensor(edges)[:len(indices), :len(indices)]
else:
if 'edges' in self.df.columns:
edge_list = eval(self.df.loc[idx, 'edges'])
n = len(indices)
edges = torch.zeros((n, n), dtype=torch.long)
for u, v, t in edge_list:
if u < n and v < n:
if t <= 4:
edges[u, v] = t
edges[v, u] = t
else:
edges[u, v] = t
edges[v, u] = 11 - t
ref['edges'] = edges
else:
ref['edges'] = torch.ones(len(indices), len(indices), dtype=torch.long) * (-100)
def _process_chartok_coords(self, idx, ref, smiles, coords=None, edges=None, mask_ratio=0):
max_len = FORMAT_INFO['chartok_coords']['max_len']
tokenizer = self.tokenizer['chartok_coords']
if smiles is None or type(smiles) is not str:
smiles = ""
label, indices = tokenizer.smiles_to_sequence(smiles, coords, mask_ratio=mask_ratio)
ref['chartok_coords'] = torch.LongTensor(label[:max_len])
indices = [i for i in indices if i < max_len]
ref['atom_indices'] = torch.LongTensor(indices)
if tokenizer.continuous_coords:
if coords is not None:
ref['coords'] = torch.tensor(coords)
else:
ref['coords'] = torch.ones(len(indices), 2) * -1.
if edges is not None:
ref['edges'] = torch.tensor(edges)[:len(indices), :len(indices)]
else:
if 'edges' in self.df.columns:
edge_list = eval(self.df.loc[idx, 'edges'])
n = len(indices)
edges = torch.zeros((n, n), dtype=torch.long)
for u, v, t in edge_list:
if u < n and v < n:
if t <= 4:
edges[u, v] = t
edges[v, u] = t
else:
edges[u, v] = t
edges[v, u] = 11 - t
ref['edges'] = edges
else:
ref['edges'] = torch.ones(len(indices), len(indices), dtype=torch.long) * (-100)
class AuxTrainDataset(Dataset):
def __init__(self, args, train_df, aux_df, tokenizer):
super().__init__()
self.train_dataset = TrainDataset(args, train_df, tokenizer, dynamic_indigo=args.dynamic_indigo)
self.aux_dataset = TrainDataset(args, aux_df, tokenizer, dynamic_indigo=False)
def __len__(self):
return len(self.train_dataset) + len(self.aux_dataset)
def __getitem__(self, idx):
if idx < len(self.train_dataset):
return self.train_dataset[idx]
else:
return self.aux_dataset[idx - len(self.train_dataset)]
def pad_images(imgs):
# B, C, H, W
max_shape = [0, 0]
for img in imgs:
for i in range(len(max_shape)):
max_shape[i] = max(max_shape[i], img.shape[-1 - i])
stack = []
for img in imgs:
pad = []
for i in range(len(max_shape)):
pad = pad + [0, max_shape[i] - img.shape[-1 - i]]
stack.append(F.pad(img, pad, value=0))
return torch.stack(stack)
def bms_collate(batch):
ids = []
imgs = []
batch = [ex for ex in batch if ex[1] is not None]
formats = list(batch[0][2].keys())
seq_formats = [k for k in formats if
k in ['atomtok', 'inchi', 'nodes', 'atomtok_coords', 'chartok_coords', 'atom_indices']]
refs = {key: [[], []] for key in seq_formats}
for ex in batch:
ids.append(ex[0])
imgs.append(ex[1])
ref = ex[2]
for key in seq_formats:
refs[key][0].append(ref[key])
refs[key][1].append(torch.LongTensor([len(ref[key])]))
# Sequence
for key in seq_formats:
# this padding should work for atomtok_with_coords too, each of which has shape (length, 4)
refs[key][0] = pad_sequence(refs[key][0], batch_first=True, padding_value=PAD_ID)
refs[key][1] = torch.stack(refs[key][1]).reshape(-1, 1)
# Time
# if 'time' in formats:
# refs['time'] = [ex[2]['time'] for ex in batch]
# Coords
if 'coords' in formats:
refs['coords'] = pad_sequence([ex[2]['coords'] for ex in batch], batch_first=True, padding_value=-1.)
# Edges
if 'edges' in formats:
edges_list = [ex[2]['edges'] for ex in batch]
max_len = max([len(edges) for edges in edges_list])
refs['edges'] = torch.stack(
[F.pad(edges, (0, max_len - len(edges), 0, max_len - len(edges)), value=-100) for edges in edges_list],
dim=0)
return ids, pad_images(imgs), refs