Spaces:
Runtime error
Runtime error
File size: 7,012 Bytes
50e6fbc e0be252 82935d8 4c20fbb cf5eed6 3e4a220 50e6fbc 4b039b3 82935d8 4b039b3 4671e61 4b039b3 a2dd03e e0be252 a2dd03e 37ed6eb 3e4a220 2c09868 4b039b3 e0be252 cf5eed6 2c09868 4c20fbb cf5eed6 4c20fbb cf5eed6 4c20fbb cf5eed6 4c20fbb 2c09868 e0be252 2c09868 e0be252 50e6fbc 4c20fbb 4b039b3 4c20fbb cfeaf7d a2dd03e 8952db1 a2dd03e e0be252 4c20fbb 4b039b3 4c20fbb 50e6fbc e0be252 cf5eed6 e0be252 4c20fbb a2dd03e 4c20fbb e0be252 a2dd03e cf5eed6 a2dd03e e0be252 4c20fbb a2dd03e 4c20fbb e0be252 cf5eed6 e0be252 82935d8 a2dd03e 8952db1 a2dd03e 37ed6eb a2dd03e 2c09868 247598f 2c09868 a2dd03e 2c09868 247598f 2c09868 a2dd03e 82935d8 4b039b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import random
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from functools import partial
from datasets import load_dataset
dataset_names = [
"AI4Code",
"AMPS",
"ASFPublicMail",
"CPDataset",
"DMMath",
"Discourse",
"Enwiki",
"EuroParliamentProceedings",
"FreeLaw_Options",
"GithubDiff",
"GithubIssues",
"Gutenberg",
"LeetCode",
"PileOfLaw",
"PubMed",
"S2ORC",
"StackExchange",
"USENET",
"USPTO",
"UbuntuIRC",
"arXiv",
]
dataset_data = {}
for name in dataset_names:
path = f"data/{name}/data.json"
ds = load_dataset(
"CarperAI/pilev2_smol_metadata",
data_files=path,
use_auth_token=os.environ["HF_TOKEN"],
split="train",
# download_mode="force_redownload",
)
dataset_data[name] = {
"ds": ds,
"check_word_number_criteria": np.array(ds["check_word_number_criteria"]),
"check_char_repetition_criteria": np.array(ds["check_char_repetition_criteria"]),
"check_flagged_words_criteria": np.array(ds["check_flagged_words_criteria"]),
"check_stop_word_ratio_criteria": np.array(ds["check_stop_word_ratio_criteria"]),
"check_perplexity_criteria": np.array(ds["check_perplexity_criteria"]),
"check_compression_ratio_criteria": np.array(ds["check_compression_ratio_criteria"]),
}
def plt_plot(criteria, dataset, threshold, greater_than=True):
plt.close("all")
x = dataset_data[dataset][criteria]
# calculate percentage of data that will be removed given threshold
perc = np.sum(x > threshold if greater_than else x < threshold) / len(x)
# create a figure
fig = plt.figure()
# add a subplot
ax = fig.add_subplot(111)
# plot some data using black
ax.hist(x, bins=50, color="black")
# plot red dashed line at threshold
ax.axvline(threshold, color='r', linestyle='dashed', linewidth=2)
# set title
# add percentage of data removed
ax.set_title(f"{dataset} (removed {perc:.2%})")
plt.xlabel("Value")
plt.ylabel("Frequency")
# make it look nice
plt.tight_layout()
return fig
def check_filtered(criteria, dataset, threshold, greater_than=True):
ds = dataset_data[dataset]["ds"]
filtered_ds = ds.filter(
lambda x: x[criteria] > threshold if greater_than else x[criteria] < threshold
)
if len(filtered_ds) == 0:
return "No examples found"
# get random sample of 1
sample = filtered_ds.select([random.randint(0, len(filtered_ds) - 1)])["text"][0]
return sample
with gr.Blocks() as demo:
dataset = gr.Radio(dataset_names, label="Dataset", value="arXiv")
with gr.Tab("Character Repetition Criteria"):
# plot some random data
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
calculate = gr.Button("Calculate")
check = gr.Button("Check Filtered Data")
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
plot_fn = partial(plt_plot, "check_char_repetition_criteria")
calculate.click(plot_fn, [dataset, threshold], plot)
check_fn = partial(check_filtered, "check_char_repetition_criteria")
check.click(check_fn, [dataset, threshold], filtered_data)
with gr.Tab("Number of Words Criteria"):
# plot some random data
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=50_000, label="Threshold")
calculate = gr.Button("Calculate")
check = gr.Button("Check Filtered Data")
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
plot_fn = partial(plt_plot, "check_word_number_criteria")
calculate.click(plot_fn, [dataset, threshold], plot)
check_fn = partial(check_filtered, "check_word_number_criteria")
check.click(check_fn, [dataset, threshold], filtered_data)
with gr.Tab("Character Repetition Criteria"):
# plot some random data
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
calculate = gr.Button("Calculate")
check = gr.Button("Check Filtered Data")
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
plot_fn = partial(plt_plot, "check_char_repetition_criteria")
calculate.click(plot_fn, [dataset, threshold], plot)
check_fn = partial(check_filtered, "check_char_repetition_criteria")
check.click(check_fn, [dataset, threshold], filtered_data)
with gr.Tab("Stop Word Ratio Criteria"):
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
calculate = gr.Button("Calculate")
check = gr.Button("Check Filtered Data")
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
plot_fn = partial(plt_plot, "check_stop_word_ratio_criteria")
calculate.click(plot_fn, [dataset, threshold], plot)
check_fn = partial(check_filtered, "check_stop_word_ratio_criteria")
check.click(check_fn, [dataset, threshold], filtered_data)
with gr.Tab("Flagged Word Criteria"):
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
calculate = gr.Button("Calculate")
check = gr.Button("Check Filtered Data")
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
plot_fn = partial(plt_plot, "check_flagged_words_criteria")
calculate.click(plot_fn, [dataset, threshold], plot)
check_fn = partial(check_filtered, "check_flagged_words_criteria")
check.click(check_fn, [dataset, threshold], filtered_data)
with gr.Tab("Perplexity Criteria"):
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=50_000, label="Threshold")
calculate = gr.Button("Calculate")
check = gr.Button("Check Filtered Data")
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
plot_fn = partial(plt_plot, "check_perplexity_criteria")
calculate.click(plot_fn, [dataset, threshold], plot)
check_fn = partial(check_filtered, "check_perplexity_criteria")
check.click(check_fn, [dataset, threshold], filtered_data)
with gr.Tab("Compression Ratio Criteria"):
plot = gr.Plot()
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
calculate = gr.Button("Calculate")
check = gr.Button("Check Filtered Data")
filtered_data = gr.Textbox(lines=5, label="Filtered Data")
plot_fn = partial(
plt_plot,
"check_compression_ratio_criteria",
greater_than=False
)
calculate.click(plot_fn, [dataset, threshold], plot)
check_fn = partial(
check_filtered,
"check_compression_ratio_criteria",
greater_than=False
)
check.click(check_fn, [dataset, threshold], filtered_data)
if __name__ == "__main__":
demo.launch() |