Spaces:
Runtime error
Runtime error
import glob | |
import math | |
import os | |
import random | |
import shutil | |
import subprocess | |
import time | |
from contextlib import contextmanager | |
from copy import copy | |
from pathlib import Path | |
from sys import platform | |
import cv2 | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torchvision | |
import yaml | |
from scipy.cluster.vq import kmeans | |
from scipy.signal import butter, filtfilt | |
from tqdm import tqdm | |
from utils.torch_utils import init_seeds, is_parallel | |
# Set printoptions | |
torch.set_printoptions(linewidth=320, precision=5, profile='long') | |
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 | |
matplotlib.rc('font', **{'size': 11}) | |
# Prevent OpenCV from multithreading (to use PyTorch DataLoader) | |
cv2.setNumThreads(0) | |
def torch_distributed_zero_first(local_rank: int): | |
""" | |
Decorator to make all processes in distributed training wait for each local_master to do something. | |
""" | |
if local_rank not in [-1, 0]: | |
torch.distributed.barrier() | |
yield | |
if local_rank == 0: | |
torch.distributed.barrier() | |
def init_seeds(seed=0): | |
random.seed(seed) | |
np.random.seed(seed) | |
init_seeds(seed=seed) | |
def get_latest_run(search_dir='./runs'): | |
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from) | |
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) | |
return max(last_list, key=os.path.getctime) | |
def check_git_status(): | |
# Suggest 'git pull' if repo is out of date | |
if platform in ['linux', 'darwin'] and not os.path.isfile('/.dockerenv'): | |
s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8') | |
if 'Your branch is behind' in s: | |
print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n') | |
def check_img_size(img_size, s=32): | |
# Verify img_size is a multiple of stride s | |
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple | |
if new_size != img_size: | |
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) | |
return new_size | |
def check_anchors(dataset, model, thr=4.0, imgsz=640): | |
# Check anchor fit to data, recompute if necessary | |
print('\nAnalyzing anchors... ', end='') | |
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() | |
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) | |
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale | |
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh | |
def metric(k): # compute metric | |
r = wh[:, None] / k[None] | |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric | |
best = x.max(1)[0] # best_x | |
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold | |
bpr = (best > 1. / thr).float().mean() # best possible recall | |
return bpr, aat | |
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2)) | |
print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='') | |
if bpr < 0.98: # threshold to recompute | |
print('. Attempting to generate improved anchors, please wait...' % bpr) | |
na = m.anchor_grid.numel() // 2 # number of anchors | |
new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) | |
new_bpr = metric(new_anchors.reshape(-1, 2))[0] | |
if new_bpr > bpr: # replace anchors | |
new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors) | |
m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference | |
m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss | |
check_anchor_order(m) | |
print('New anchors saved to model. Update model *.yaml to use these anchors in the future.') | |
else: | |
print('Original anchors better than new anchors. Proceeding with original anchors.') | |
print('') # newline | |
def check_anchor_order(m): | |
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary | |
a = m.anchor_grid.prod(-1).view(-1) # anchor area | |
da = a[-1] - a[0] # delta a | |
ds = m.stride[-1] - m.stride[0] # delta s | |
if da.sign() != ds.sign(): # same order | |
print('Reversing anchor order') | |
m.anchors[:] = m.anchors.flip(0) | |
m.anchor_grid[:] = m.anchor_grid.flip(0) | |
def check_file(file): | |
# Searches for file if not found locally | |
if os.path.isfile(file) or file == '': | |
return file | |
else: | |
files = glob.glob('./**/' + file, recursive=True) # find file | |
assert len(files), 'File Not Found: %s' % file # assert file was found | |
return files[0] # return first file if multiple found | |
def check_dataset(dict): | |
# Download dataset if not found | |
train, val = os.path.abspath(dict['train']), os.path.abspath(dict['val']) # data paths | |
if not (os.path.exists(train) and os.path.exists(val)): | |
print('\nWARNING: Dataset not found, nonexistant paths: %s' % [train, val]) | |
if 'download' in dict: | |
s = dict['download'] | |
print('Attempting autodownload from: %s' % s) | |
if s.startswith('http') and s.endswith('.zip'): # URL | |
f = Path(s).name # filename | |
torch.hub.download_url_to_file(s, f) | |
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) | |
else: # bash script | |
r = os.system(s) | |
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value | |
else: | |
Exception('Dataset autodownload unavailable.') | |
def make_divisible(x, divisor): | |
# Returns x evenly divisble by divisor | |
return math.ceil(x / divisor) * divisor | |
def labels_to_class_weights(labels, nc=80): | |
# Get class weights (inverse frequency) from training labels | |
if labels[0] is None: # no labels loaded | |
return torch.Tensor() | |
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO | |
classes = labels[:, 0].astype(np.int) # labels = [class xywh] | |
weights = np.bincount(classes, minlength=nc) # occurences per class | |
# Prepend gridpoint count (for uCE trianing) | |
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image | |
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start | |
weights[weights == 0] = 1 # replace empty bins with 1 | |
weights = 1 / weights # number of targets per class | |
weights /= weights.sum() # normalize | |
return torch.from_numpy(weights) | |
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): | |
# Produces image weights based on class mAPs | |
n = len(labels) | |
class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)]) | |
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) | |
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample | |
return image_weights | |
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) | |
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ | |
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') | |
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') | |
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco | |
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet | |
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, | |
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] | |
return x | |
def xyxy2xywh(x): | |
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right | |
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) | |
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center | |
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center | |
y[:, 2] = x[:, 2] - x[:, 0] # width | |
y[:, 3] = x[:, 3] - x[:, 1] # height | |
return y | |
def xywh2xyxy(x): | |
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x) | |
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x | |
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y | |
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x | |
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y | |
return y | |
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): | |
# Rescale coords (xyxy) from img1_shape to img0_shape | |
if ratio_pad is None: # calculate from img0_shape | |
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new | |
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding | |
else: | |
gain = ratio_pad[0][0] | |
pad = ratio_pad[1] | |
coords[:, [0, 2]] -= pad[0] # x padding | |
coords[:, [1, 3]] -= pad[1] # y padding | |
coords[:, :4] /= gain | |
clip_coords(coords, img0_shape) | |
return coords | |
def clip_coords(boxes, img_shape): | |
# Clip bounding xyxy bounding boxes to image shape (height, width) | |
boxes[:, 0].clamp_(0, img_shape[1]) # x1 | |
boxes[:, 1].clamp_(0, img_shape[0]) # y1 | |
boxes[:, 2].clamp_(0, img_shape[1]) # x2 | |
boxes[:, 3].clamp_(0, img_shape[0]) # y2 | |
def ap_per_class(tp, conf, pred_cls, target_cls): | |
""" Compute the average precision, given the recall and precision curves. | |
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. | |
# Arguments | |
tp: True positives (nparray, nx1 or nx10). | |
conf: Objectness value from 0-1 (nparray). | |
pred_cls: Predicted object classes (nparray). | |
target_cls: True object classes (nparray). | |
# Returns | |
The average precision as computed in py-faster-rcnn. | |
""" | |
# Sort by objectness | |
i = np.argsort(-conf) | |
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] | |
# Find unique classes | |
unique_classes = np.unique(target_cls) | |
# Create Precision-Recall curve and compute AP for each class | |
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898 | |
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95) | |
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s) | |
for ci, c in enumerate(unique_classes): | |
i = pred_cls == c | |
n_gt = (target_cls == c).sum() # Number of ground truth objects | |
n_p = i.sum() # Number of predicted objects | |
if n_p == 0 or n_gt == 0: | |
continue | |
else: | |
# Accumulate FPs and TPs | |
fpc = (1 - tp[i]).cumsum(0) | |
tpc = tp[i].cumsum(0) | |
# Recall | |
recall = tpc / (n_gt + 1e-16) # recall curve | |
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases | |
# Precision | |
precision = tpc / (tpc + fpc) # precision curve | |
p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score | |
# AP from recall-precision curve | |
for j in range(tp.shape[1]): | |
ap[ci, j] = compute_ap(recall[:, j], precision[:, j]) | |
# Plot | |
# fig, ax = plt.subplots(1, 1, figsize=(5, 5)) | |
# ax.plot(recall, precision) | |
# ax.set_xlabel('Recall') | |
# ax.set_ylabel('Precision') | |
# ax.set_xlim(0, 1.01) | |
# ax.set_ylim(0, 1.01) | |
# fig.tight_layout() | |
# fig.savefig('PR_curve.png', dpi=300) | |
# Compute F1 score (harmonic mean of precision and recall) | |
f1 = 2 * p * r / (p + r + 1e-16) | |
return p, r, ap, f1, unique_classes.astype('int32') | |
def compute_ap(recall, precision): | |
""" Compute the average precision, given the recall and precision curves. | |
Source: https://github.com/rbgirshick/py-faster-rcnn. | |
# Arguments | |
recall: The recall curve (list). | |
precision: The precision curve (list). | |
# Returns | |
The average precision as computed in py-faster-rcnn. | |
""" | |
# Append sentinel values to beginning and end | |
mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)])) | |
mpre = np.concatenate(([0.], precision, [0.])) | |
# Compute the precision envelope | |
mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) | |
# Integrate area under curve | |
method = 'interp' # methods: 'continuous', 'interp' | |
if method == 'interp': | |
x = np.linspace(0, 1, 101) # 101-point interp (COCO) | |
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate | |
else: # 'continuous' | |
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes | |
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve | |
return ap | |
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): | |
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 | |
box2 = box2.T | |
# Get the coordinates of bounding boxes | |
if x1y1x2y2: # x1, y1, x2, y2 = box1 | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] | |
else: # transform from xywh to xyxy | |
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 | |
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 | |
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 | |
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 | |
# Intersection area | |
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ | |
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) | |
# Union Area | |
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 | |
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 | |
union = (w1 * h1 + 1e-16) + w2 * h2 - inter | |
iou = inter / union # iou | |
if GIoU or DIoU or CIoU: | |
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width | |
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height | |
if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf | |
c_area = cw * ch + 1e-16 # convex area | |
return iou - (c_area - union) / c_area # GIoU | |
if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 | |
# convex diagonal squared | |
c2 = cw ** 2 + ch ** 2 + 1e-16 | |
# centerpoint distance squared | |
rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4 | |
if DIoU: | |
return iou - rho2 / c2 # DIoU | |
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 | |
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) | |
with torch.no_grad(): | |
alpha = v / (1 - iou + v + 1e-16) | |
return iou - (rho2 / c2 + v * alpha) # CIoU | |
return iou | |
def box_iou(box1, box2): | |
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py | |
""" | |
Return intersection-over-union (Jaccard index) of boxes. | |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. | |
Arguments: | |
box1 (Tensor[N, 4]) | |
box2 (Tensor[M, 4]) | |
Returns: | |
iou (Tensor[N, M]): the NxM matrix containing the pairwise | |
IoU values for every element in boxes1 and boxes2 | |
""" | |
def box_area(box): | |
# box = 4xn | |
return (box[2] - box[0]) * (box[3] - box[1]) | |
area1 = box_area(box1.T) | |
area2 = box_area(box2.T) | |
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) | |
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) | |
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) | |
def wh_iou(wh1, wh2): | |
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 | |
wh1 = wh1[:, None] # [N,1,2] | |
wh2 = wh2[None] # [1,M,2] | |
inter = torch.min(wh1, wh2).prod(2) # [N,M] | |
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) | |
class FocalLoss(nn.Module): | |
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) | |
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): | |
super(FocalLoss, self).__init__() | |
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() | |
self.gamma = gamma | |
self.alpha = alpha | |
self.reduction = loss_fcn.reduction | |
self.loss_fcn.reduction = 'none' # required to apply FL to each element | |
def forward(self, pred, true): | |
loss = self.loss_fcn(pred, true) | |
# p_t = torch.exp(-loss) | |
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability | |
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py | |
pred_prob = torch.sigmoid(pred) # prob from logits | |
p_t = true * pred_prob + (1 - true) * (1 - pred_prob) | |
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) | |
modulating_factor = (1.0 - p_t) ** self.gamma | |
loss *= alpha_factor * modulating_factor | |
if self.reduction == 'mean': | |
return loss.mean() | |
elif self.reduction == 'sum': | |
return loss.sum() | |
else: # 'none' | |
return loss | |
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 | |
# return positive, negative label smoothing BCE targets | |
return 1.0 - 0.5 * eps, 0.5 * eps | |
class BCEBlurWithLogitsLoss(nn.Module): | |
# BCEwithLogitLoss() with reduced missing label effects. | |
def __init__(self, alpha=0.05): | |
super(BCEBlurWithLogitsLoss, self).__init__() | |
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() | |
self.alpha = alpha | |
def forward(self, pred, true): | |
loss = self.loss_fcn(pred, true) | |
pred = torch.sigmoid(pred) # prob from logits | |
dx = pred - true # reduce only missing label effects | |
# dx = (pred - true).abs() # reduce missing label and false label effects | |
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) | |
loss *= alpha_factor | |
return loss.mean() | |
def compute_loss(p, targets, model): # predictions, targets, model | |
device = targets.device | |
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) | |
tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets | |
h = model.hyp # hyperparameters | |
# Define criteria | |
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device) | |
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device) | |
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 | |
cp, cn = smooth_BCE(eps=0.0) | |
# Focal loss | |
g = h['fl_gamma'] # focal loss gamma | |
if g > 0: | |
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) | |
# Losses | |
nt = 0 # number of targets | |
np = len(p) # number of outputs | |
balance = [4.0, 1.0, 0.4] if np == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6 | |
for i, pi in enumerate(p): # layer index, layer predictions | |
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx | |
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj | |
n = b.shape[0] # number of targets | |
if n: | |
nt += n # cumulative targets | |
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets | |
# Regression | |
pxy = ps[:, :2].sigmoid() * 2. - 0.5 | |
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] | |
pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box | |
giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target) | |
lbox += (1.0 - giou).mean() # giou loss | |
# Objectness | |
tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio | |
# Classification | |
if model.nc > 1: # cls loss (only if multiple classes) | |
t = torch.full_like(ps[:, 5:], cn, device=device) # targets | |
t[range(n), tcls[i]] = cp | |
lcls += BCEcls(ps[:, 5:], t) # BCE | |
# Append targets to text file | |
# with open('targets.txt', 'a') as file: | |
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] | |
lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss | |
s = 3 / np # output count scaling | |
lbox *= h['giou'] * s | |
lobj *= h['obj'] * s * (1.4 if np == 4 else 1.) | |
lcls *= h['cls'] * s | |
bs = tobj.shape[0] # batch size | |
loss = lbox + lobj + lcls | |
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() | |
def build_targets(p, targets, model): | |
# Build targets for compute_loss(), input targets(image,class,x,y,w,h) | |
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module | |
na, nt = det.na, targets.shape[0] # number of anchors, targets | |
tcls, tbox, indices, anch = [], [], [], [] | |
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain | |
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) | |
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices | |
g = 0.5 # bias | |
off = torch.tensor([[0, 0], | |
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m | |
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm | |
], device=targets.device).float() * g # offsets | |
for i in range(det.nl): | |
anchors = det.anchors[i] | |
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain | |
# Match targets to anchors | |
t = targets * gain | |
if nt: | |
# Matches | |
r = t[:, :, 4:6] / anchors[:, None] # wh ratio | |
j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare | |
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) | |
t = t[j] # filter | |
# Offsets | |
gxy = t[:, 2:4] # grid xy | |
gxi = gain[[2, 3]] - gxy # inverse | |
j, k = ((gxy % 1. < g) & (gxy > 1.)).T | |
l, m = ((gxi % 1. < g) & (gxi > 1.)).T | |
j = torch.stack((torch.ones_like(j), j, k, l, m)) | |
t = t.repeat((5, 1, 1))[j] | |
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] | |
else: | |
t = targets[0] | |
offsets = 0 | |
# Define | |
b, c = t[:, :2].long().T # image, class | |
gxy = t[:, 2:4] # grid xy | |
gwh = t[:, 4:6] # grid wh | |
gij = (gxy - offsets).long() | |
gi, gj = gij.T # grid xy indices | |
# Append | |
a = t[:, 6].long() # anchor indices | |
indices.append((b, a, gj, gi)) # image, anchor, grid indices | |
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box | |
anch.append(anchors[a]) # anchors | |
tcls.append(c) # class | |
return tcls, tbox, indices, anch | |
def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False): | |
"""Performs Non-Maximum Suppression (NMS) on inference results | |
Returns: | |
detections with shape: nx6 (x1, y1, x2, y2, conf, cls) | |
""" | |
if prediction.dtype is torch.float16: | |
prediction = prediction.float() # to FP32 | |
nc = prediction[0].shape[1] - 5 # number of classes | |
xc = prediction[..., 4] > conf_thres # candidates | |
# Settings | |
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height | |
max_det = 300 # maximum number of detections per image | |
time_limit = 10.0 # seconds to quit after | |
redundant = True # require redundant detections | |
multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) | |
t = time.time() | |
output = [None] * prediction.shape[0] | |
for xi, x in enumerate(prediction): # image index, image inference | |
# Apply constraints | |
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height | |
x = x[xc[xi]] # confidence | |
# If none remain process next image | |
if not x.shape[0]: | |
continue | |
# Compute conf | |
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf | |
# Box (center x, center y, width, height) to (x1, y1, x2, y2) | |
box = xywh2xyxy(x[:, :4]) | |
# Detections matrix nx6 (xyxy, conf, cls) | |
if multi_label: | |
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T | |
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) | |
else: # best class only | |
conf, j = x[:, 5:].max(1, keepdim=True) | |
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] | |
# Filter by class | |
if classes: | |
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] | |
# Apply finite constraint | |
# if not torch.isfinite(x).all(): | |
# x = x[torch.isfinite(x).all(1)] | |
# If none remain process next image | |
n = x.shape[0] # number of boxes | |
if not n: | |
continue | |
# Sort by confidence | |
# x = x[x[:, 4].argsort(descending=True)] | |
# Batched NMS | |
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes | |
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores | |
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) | |
if i.shape[0] > max_det: # limit detections | |
i = i[:max_det] | |
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) | |
try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) | |
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix | |
weights = iou * scores[None] # box weights | |
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes | |
if redundant: | |
i = i[iou.sum(1) > 1] # require redundancy | |
except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139 | |
print(x, i, x.shape, i.shape) | |
pass | |
output[xi] = x[i] | |
if (time.time() - t) > time_limit: | |
break # time limit exceeded | |
return output | |
def strip_optimizer(f='weights/best.pt', s=''): # from utils.utils import *; strip_optimizer() | |
# Strip optimizer from 'f' to finalize training, optionally save as 's' | |
x = torch.load(f, map_location=torch.device('cpu')) | |
x['optimizer'] = None | |
x['training_results'] = None | |
x['epoch'] = -1 | |
x['model'].half() # to FP16 | |
for p in x['model'].parameters(): | |
p.requires_grad = False | |
torch.save(x, s or f) | |
mb = os.path.getsize(s or f) / 1E6 # filesize | |
print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb)) | |
def coco_class_count(path='../coco/labels/train2014/'): | |
# Histogram of occurrences per class | |
nc = 80 # number classes | |
x = np.zeros(nc, dtype='int32') | |
files = sorted(glob.glob('%s/*.*' % path)) | |
for i, file in enumerate(files): | |
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) | |
x += np.bincount(labels[:, 0].astype('int32'), minlength=nc) | |
print(i, len(files)) | |
def coco_only_people(path='../coco/labels/train2017/'): # from utils.utils import *; coco_only_people() | |
# Find images with only people | |
files = sorted(glob.glob('%s/*.*' % path)) | |
for i, file in enumerate(files): | |
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5) | |
if all(labels[:, 0] == 0): | |
print(labels.shape[0], file) | |
def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random() | |
# crops images into random squares up to scale fraction | |
# WARNING: overwrites images! | |
for file in tqdm(sorted(glob.glob('%s/*.*' % path))): | |
img = cv2.imread(file) # BGR | |
if img is not None: | |
h, w = img.shape[:2] | |
# create random mask | |
a = 30 # minimum size (pixels) | |
mask_h = random.randint(a, int(max(a, h * scale))) # mask height | |
mask_w = mask_h # mask width | |
# box | |
xmin = max(0, random.randint(0, w) - mask_w // 2) | |
ymin = max(0, random.randint(0, h) - mask_h // 2) | |
xmax = min(w, xmin + mask_w) | |
ymax = min(h, ymin + mask_h) | |
# apply random color mask | |
cv2.imwrite(file, img[ymin:ymax, xmin:xmax]) | |
def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43): | |
# Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels() | |
if os.path.exists('new/'): | |
shutil.rmtree('new/') # delete output folder | |
os.makedirs('new/') # make new output folder | |
os.makedirs('new/labels/') | |
os.makedirs('new/images/') | |
for file in tqdm(sorted(glob.glob('%s/*.*' % path))): | |
with open(file, 'r') as f: | |
labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) | |
i = labels[:, 0] == label_class | |
if any(i): | |
img_file = file.replace('labels', 'images').replace('txt', 'jpg') | |
labels[:, 0] = 0 # reset class to 0 | |
with open('new/images.txt', 'a') as f: # add image to dataset list | |
f.write(img_file + '\n') | |
with open('new/labels/' + Path(file).name, 'a') as f: # write label | |
for l in labels[i]: | |
f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l)) | |
shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images | |
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): | |
""" Creates kmeans-evolved anchors from training dataset | |
Arguments: | |
path: path to dataset *.yaml, or a loaded dataset | |
n: number of anchors | |
img_size: image size used for training | |
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 | |
gen: generations to evolve anchors using genetic algorithm | |
Return: | |
k: kmeans evolved anchors | |
Usage: | |
from utils.utils import *; _ = kmean_anchors() | |
""" | |
thr = 1. / thr | |
def metric(k, wh): # compute metrics | |
r = wh[:, None] / k[None] | |
x = torch.min(r, 1. / r).min(2)[0] # ratio metric | |
# x = wh_iou(wh, torch.tensor(k)) # iou metric | |
return x, x.max(1)[0] # x, best_x | |
def fitness(k): # mutation fitness | |
_, best = metric(torch.tensor(k, dtype=torch.float32), wh) | |
return (best * (best > thr).float()).mean() # fitness | |
def print_results(k): | |
k = k[np.argsort(k.prod(1))] # sort small to large | |
x, best = metric(k, wh0) | |
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr | |
print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat)) | |
print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' % | |
(n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='') | |
for i, x in enumerate(k): | |
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg | |
return k | |
if isinstance(path, str): # *.yaml file | |
with open(path) as f: | |
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict | |
from utils.datasets import LoadImagesAndLabels | |
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) | |
else: | |
dataset = path # dataset | |
# Get label wh | |
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) | |
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh | |
# Filter | |
i = (wh0 < 3.0).any(1).sum() | |
if i: | |
print('WARNING: Extremely small objects found. ' | |
'%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0))) | |
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels | |
# Kmeans calculation | |
print('Running kmeans for %g anchors on %g points...' % (n, len(wh))) | |
s = wh.std(0) # sigmas for whitening | |
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance | |
k *= s | |
wh = torch.tensor(wh, dtype=torch.float32) # filtered | |
wh0 = torch.tensor(wh0, dtype=torch.float32) # unflitered | |
k = print_results(k) | |
# Plot | |
# k, d = [None] * 20, [None] * 20 | |
# for i in tqdm(range(1, 21)): | |
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance | |
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) | |
# ax = ax.ravel() | |
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') | |
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh | |
# ax[0].hist(wh[wh[:, 0]<100, 0],400) | |
# ax[1].hist(wh[wh[:, 1]<100, 1],400) | |
# fig.tight_layout() | |
# fig.savefig('wh.png', dpi=200) | |
# Evolve | |
npr = np.random | |
f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma | |
pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar | |
for _ in pbar: | |
v = np.ones(sh) | |
while (v == 1).all(): # mutate until a change occurs (prevent duplicates) | |
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) | |
kg = (k.copy() * v).clip(min=2.0) | |
fg = fitness(kg) | |
if fg > f: | |
f, k = fg, kg.copy() | |
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f | |
if verbose: | |
print_results(k) | |
return print_results(k) | |
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''): | |
# Print mutation results to evolve.txt (for use with train.py --evolve) | |
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys | |
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values | |
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) | |
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c)) | |
if bucket: | |
os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt | |
with open('evolve.txt', 'a') as f: # append result | |
f.write(c + b + '\n') | |
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows | |
x = x[np.argsort(-fitness(x))] # sort | |
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness | |
if bucket: | |
os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt | |
# Save yaml | |
for i, k in enumerate(hyp.keys()): | |
hyp[k] = float(x[0, i + 7]) | |
with open(yaml_file, 'w') as f: | |
results = tuple(x[0, :7]) | |
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) | |
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n') | |
yaml.dump(hyp, f, sort_keys=False) | |
def apply_classifier(x, model, img, im0): | |
# applies a second stage classifier to yolo outputs | |
im0 = [im0] if isinstance(im0, np.ndarray) else im0 | |
for i, d in enumerate(x): # per image | |
if d is not None and len(d): | |
d = d.clone() | |
# Reshape and pad cutouts | |
b = xyxy2xywh(d[:, :4]) # boxes | |
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square | |
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad | |
d[:, :4] = xywh2xyxy(b).long() | |
# Rescale boxes from img_size to im0 size | |
scale_coords(img.shape[2:], d[:, :4], im0[i].shape) | |
# Classes | |
pred_cls1 = d[:, 5].long() | |
ims = [] | |
for j, a in enumerate(d): # per item | |
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] | |
im = cv2.resize(cutout, (224, 224)) # BGR | |
# cv2.imwrite('test%i.jpg' % j, cutout) | |
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 | |
im /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
ims.append(im) | |
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction | |
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections | |
return x | |
def fitness(x): | |
# Returns fitness (for use with results.txt or evolve.txt) | |
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] | |
return (x[:, :4] * w).sum(1) | |
def output_to_target(output, width, height): | |
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] | |
if isinstance(output, torch.Tensor): | |
output = output.cpu().numpy() | |
targets = [] | |
for i, o in enumerate(output): | |
if o is not None: | |
for pred in o: | |
box = pred[:4] | |
w = (box[2] - box[0]) / width | |
h = (box[3] - box[1]) / height | |
x = box[0] / width + w / 2 | |
y = box[1] / height + h / 2 | |
conf = pred[4] | |
cls = int(pred[5]) | |
targets.append([i, cls, x, y, w, h, conf]) | |
return np.array(targets) | |
def increment_dir(dir, comment=''): | |
# Increments a directory runs/exp1 --> runs/exp2_comment | |
n = 0 # number | |
dir = str(Path(dir)) # os-agnostic | |
d = sorted(glob.glob(dir + '*')) # directories | |
if len(d): | |
n = max([int(x[len(dir):x.find('_') if '_' in x else None]) for x in d]) + 1 # increment | |
return dir + str(n) + ('_' + comment if comment else '') | |
# Plotting functions --------------------------------------------------------------------------------------------------- | |
def hist2d(x, y, n=100): | |
# 2d histogram used in labels.png and evolve.png | |
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) | |
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) | |
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) | |
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) | |
return np.log(hist[xidx, yidx]) | |
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): | |
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy | |
def butter_lowpass(cutoff, fs, order): | |
nyq = 0.5 * fs | |
normal_cutoff = cutoff / nyq | |
b, a = butter(order, normal_cutoff, btype='low', analog=False) | |
return b, a | |
b, a = butter_lowpass(cutoff, fs, order=order) | |
return filtfilt(b, a, data) # forward-backward filter | |
def plot_one_box(x, img, color=None, label=None, line_thickness=None): | |
# Plots one bounding box on image img | |
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness | |
color = color or [random.randint(0, 255) for _ in range(3)] | |
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) | |
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) | |
if label: | |
tf = max(tl - 1, 1) # font thickness | |
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 | |
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled | |
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) | |
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods() | |
# Compares the two methods for width-height anchor multiplication | |
# https://github.com/ultralytics/yolov3/issues/168 | |
x = np.arange(-4.0, 4.0, .1) | |
ya = np.exp(x) | |
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 | |
fig = plt.figure(figsize=(6, 3), dpi=150) | |
plt.plot(x, ya, '.-', label='YOLOv3') | |
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2') | |
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6') | |
plt.xlim(left=-4, right=4) | |
plt.ylim(bottom=0, top=6) | |
plt.xlabel('input') | |
plt.ylabel('output') | |
plt.grid() | |
plt.legend() | |
fig.tight_layout() | |
fig.savefig('comparison.png', dpi=200) | |
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): | |
tl = 3 # line thickness | |
tf = max(tl - 1, 1) # font thickness | |
if os.path.isfile(fname): # do not overwrite | |
return None | |
if isinstance(images, torch.Tensor): | |
images = images.cpu().float().numpy() | |
if isinstance(targets, torch.Tensor): | |
targets = targets.cpu().numpy() | |
# un-normalise | |
if np.max(images[0]) <= 1: | |
images *= 255 | |
bs, _, h, w = images.shape # batch size, _, height, width | |
bs = min(bs, max_subplots) # limit plot images | |
ns = np.ceil(bs ** 0.5) # number of subplots (square) | |
# Check if we should resize | |
scale_factor = max_size / max(h, w) | |
if scale_factor < 1: | |
h = math.ceil(scale_factor * h) | |
w = math.ceil(scale_factor * w) | |
# Empty array for output | |
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) | |
# Fix class - colour map | |
prop_cycle = plt.rcParams['axes.prop_cycle'] | |
# https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb | |
hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) | |
color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']] | |
for i, img in enumerate(images): | |
if i == max_subplots: # if last batch has fewer images than we expect | |
break | |
block_x = int(w * (i // ns)) | |
block_y = int(h * (i % ns)) | |
img = img.transpose(1, 2, 0) | |
if scale_factor < 1: | |
img = cv2.resize(img, (w, h)) | |
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img | |
if len(targets) > 0: | |
image_targets = targets[targets[:, 0] == i] | |
boxes = xywh2xyxy(image_targets[:, 2:6]).T | |
classes = image_targets[:, 1].astype('int') | |
gt = image_targets.shape[1] == 6 # ground truth if no conf column | |
conf = None if gt else image_targets[:, 6] # check for confidence presence (gt vs pred) | |
boxes[[0, 2]] *= w | |
boxes[[0, 2]] += block_x | |
boxes[[1, 3]] *= h | |
boxes[[1, 3]] += block_y | |
for j, box in enumerate(boxes.T): | |
cls = int(classes[j]) | |
color = color_lut[cls % len(color_lut)] | |
cls = names[cls] if names else cls | |
if gt or conf[j] > 0.3: # 0.3 conf thresh | |
label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j]) | |
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl) | |
# Draw image filename labels | |
if paths is not None: | |
label = os.path.basename(paths[i])[:40] # trim to 40 char | |
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, | |
lineType=cv2.LINE_AA) | |
# Image border | |
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) | |
if fname is not None: | |
mosaic = cv2.resize(mosaic, (int(ns * w * 0.5), int(ns * h * 0.5)), interpolation=cv2.INTER_AREA) | |
cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) | |
return mosaic | |
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): | |
# Plot LR simulating training for full epochs | |
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals | |
y = [] | |
for _ in range(epochs): | |
scheduler.step() | |
y.append(optimizer.param_groups[0]['lr']) | |
plt.plot(y, '.-', label='LR') | |
plt.xlabel('epoch') | |
plt.ylabel('LR') | |
plt.grid() | |
plt.xlim(0, epochs) | |
plt.ylim(0) | |
plt.tight_layout() | |
plt.savefig(Path(save_dir) / 'LR.png', dpi=200) | |
def plot_test_txt(): # from utils.utils import *; plot_test() | |
# Plot test.txt histograms | |
x = np.loadtxt('test.txt', dtype=np.float32) | |
box = xyxy2xywh(x[:, :4]) | |
cx, cy = box[:, 0], box[:, 1] | |
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) | |
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) | |
ax.set_aspect('equal') | |
plt.savefig('hist2d.png', dpi=300) | |
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) | |
ax[0].hist(cx, bins=600) | |
ax[1].hist(cy, bins=600) | |
plt.savefig('hist1d.png', dpi=200) | |
def plot_targets_txt(): # from utils.utils import *; plot_targets_txt() | |
# Plot targets.txt histograms | |
x = np.loadtxt('targets.txt', dtype=np.float32).T | |
s = ['x targets', 'y targets', 'width targets', 'height targets'] | |
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) | |
ax = ax.ravel() | |
for i in range(4): | |
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) | |
ax[i].legend() | |
ax[i].set_title(s[i]) | |
plt.savefig('targets.jpg', dpi=200) | |
def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt() | |
# Plot study.txt generated by test.py | |
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) | |
ax = ax.ravel() | |
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) | |
for f in ['coco_study/study_coco_yolov5%s.txt' % x for x in ['s', 'm', 'l', 'x']]: | |
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T | |
x = np.arange(y.shape[1]) if x is None else np.array(x) | |
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] | |
for i in range(7): | |
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) | |
ax[i].set_title(s[i]) | |
j = y[3].argmax() + 1 | |
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8, | |
label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO')) | |
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.8, 39.6, 43.0, 47.5, 49.4, 50.7], | |
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') | |
ax2.grid() | |
ax2.set_xlim(0, 30) | |
ax2.set_ylim(28, 50) | |
ax2.set_yticks(np.arange(30, 55, 5)) | |
ax2.set_xlabel('GPU Speed (ms/img)') | |
ax2.set_ylabel('COCO AP val') | |
ax2.legend(loc='lower right') | |
plt.savefig('study_mAP_latency.png', dpi=300) | |
plt.savefig(f.replace('.txt', '.png'), dpi=200) | |
def plot_labels(labels, save_dir=''): | |
# plot dataset labels | |
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes | |
nc = int(c.max() + 1) # number of classes | |
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) | |
ax = ax.ravel() | |
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) | |
ax[0].set_xlabel('classes') | |
ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet') | |
ax[1].set_xlabel('x') | |
ax[1].set_ylabel('y') | |
ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet') | |
ax[2].set_xlabel('width') | |
ax[2].set_ylabel('height') | |
plt.savefig(Path(save_dir) / 'labels.png', dpi=200) | |
plt.close() | |
def plot_evolution(yaml_file='runs/evolve/hyp_evolved.yaml'): # from utils.utils import *; plot_evolution() | |
# Plot hyperparameter evolution results in evolve.txt | |
with open(yaml_file) as f: | |
hyp = yaml.load(f, Loader=yaml.FullLoader) | |
x = np.loadtxt('evolve.txt', ndmin=2) | |
f = fitness(x) | |
# weights = (f - f.min()) ** 2 # for weighted results | |
plt.figure(figsize=(10, 10), tight_layout=True) | |
matplotlib.rc('font', **{'size': 8}) | |
for i, (k, v) in enumerate(hyp.items()): | |
y = x[:, i + 7] | |
# mu = (y * weights).sum() / weights.sum() # best weighted result | |
mu = y[f.argmax()] # best single result | |
plt.subplot(5, 5, i + 1) | |
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none') | |
plt.plot(mu, f.max(), 'k+', markersize=15) | |
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters | |
if i % 5 != 0: | |
plt.yticks([]) | |
print('%15s: %.3g' % (k, mu)) | |
plt.savefig('evolve.png', dpi=200) | |
print('\nPlot saved as evolve.png') | |
def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay() | |
# Plot training 'results*.txt', overlaying train and val losses | |
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends | |
t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles | |
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): | |
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |
n = results.shape[1] # number of rows | |
x = range(start, min(stop, n) if stop else n) | |
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) | |
ax = ax.ravel() | |
for i in range(5): | |
for j in [i, i + 5]: | |
y = results[j, x] | |
ax[i].plot(x, y, marker='.', label=s[j]) | |
# y_smooth = butter_lowpass_filtfilt(y) | |
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) | |
ax[i].set_title(t[i]) | |
ax[i].legend() | |
ax[i].set_ylabel(f) if i == 0 else None # add filename | |
fig.savefig(f.replace('.txt', '.png'), dpi=200) | |
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), | |
save_dir=''): # from utils.utils import *; plot_results() | |
# Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training | |
fig, ax = plt.subplots(2, 5, figsize=(12, 6)) | |
ax = ax.ravel() | |
s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall', | |
'val GIoU', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] | |
if bucket: | |
os.system('rm -rf storage.googleapis.com') | |
files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] | |
else: | |
files = glob.glob(str(Path(save_dir) / 'results*.txt')) + glob.glob('../../Downloads/results*.txt') | |
for fi, f in enumerate(files): | |
try: | |
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |
n = results.shape[1] # number of rows | |
x = range(start, min(stop, n) if stop else n) | |
for i in range(10): | |
y = results[i, x] | |
if i in [0, 1, 2, 5, 6, 7]: | |
y[y == 0] = np.nan # dont show zero loss values | |
# y /= y[0] # normalize | |
label = labels[fi] if len(labels) else Path(f).stem | |
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8) | |
ax[i].set_title(s[i]) | |
# if i in [5, 6, 7]: # share train and val loss y axes | |
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | |
except: | |
print('Warning: Plotting error for %s, skipping file' % f) | |
fig.tight_layout() | |
ax[1].legend() | |
fig.savefig(Path(save_dir) / 'results.png', dpi=200) | |