File size: 10,396 Bytes
443d045
 
 
 
 
 
d97c34e
443d045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d97c34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a6843
443d045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9946a2
443d045
 
 
 
 
 
fe4350f
443d045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a6843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443d045
0ca1021
 
 
443d045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a6843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443d045
a31b1ce
443d045
fc1cf7c
443d045
 
 
 
 
 
 
 
 
 
77a6843
 
 
 
 
443d045
 
f88ad22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import sys
from typing import Dict
sys.path.insert(0, 'gradio-modified')

import gradio as gr
import numpy as np
import torch.nn as nn
from PIL import Image

import torch

if torch.cuda.is_available():
    t = torch.cuda.get_device_properties(0).total_memory
    r = torch.cuda.memory_reserved(0)
    a = torch.cuda.memory_allocated(0)
    f = t-a  # free inside reserved
    if f < 2**32:
        device = 'cpu'
    else:
        device = 'cuda'
else:
    device = 'cpu'
    torch._C._jit_set_bailout_depth(0)

print('Use device:', device)


net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt')

class BaseColor(nn.Module):
	def __init__(self):
		super(BaseColor, self).__init__()

		self.l_cent = 50.
		self.l_norm = 100.
		self.ab_norm = 110.

	def normalize_l(self, in_l):
		return (in_l-self.l_cent)/self.l_norm

	def unnormalize_l(self, in_l):
		return in_l*self.l_norm + self.l_cent

	def normalize_ab(self, in_ab):
		return in_ab/self.ab_norm

	def unnormalize_ab(self, in_ab):
		return in_ab*self.ab_norm

        

class ECCVGenerator(BaseColor):
    def __init__(self, norm_layer=nn.BatchNorm2d):
        super(ECCVGenerator, self).__init__()

        model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),]
        model1+=[nn.ReLU(True),]
        model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),]
        model1+=[nn.ReLU(True),]
        model1+=[norm_layer(64),]

        model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
        model2+=[nn.ReLU(True),]
        model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),]
        model2+=[nn.ReLU(True),]
        model2+=[norm_layer(128),]

        model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model3+=[nn.ReLU(True),]
        model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model3+=[nn.ReLU(True),]
        model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),]
        model3+=[nn.ReLU(True),]
        model3+=[norm_layer(256),]

        model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model4+=[nn.ReLU(True),]
        model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model4+=[nn.ReLU(True),]
        model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model4+=[nn.ReLU(True),]
        model4+=[norm_layer(512),]

        model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model5+=[nn.ReLU(True),]
        model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model5+=[nn.ReLU(True),]
        model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model5+=[nn.ReLU(True),]
        model5+=[norm_layer(512),]

        model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model6+=[nn.ReLU(True),]
        model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model6+=[nn.ReLU(True),]
        model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
        model6+=[nn.ReLU(True),]
        model6+=[norm_layer(512),]

        model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model7+=[nn.ReLU(True),]
        model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model7+=[nn.ReLU(True),]
        model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
        model7+=[nn.ReLU(True),]
        model7+=[norm_layer(512),]

        model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),]
        model8+=[nn.ReLU(True),]
        model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model8+=[nn.ReLU(True),]
        model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
        model8+=[nn.ReLU(True),]

        model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),]

        self.model1 = nn.Sequential(*model1)
        self.model2 = nn.Sequential(*model2)
        self.model3 = nn.Sequential(*model3)
        self.model4 = nn.Sequential(*model4)
        self.model5 = nn.Sequential(*model5)
        self.model6 = nn.Sequential(*model6)
        self.model7 = nn.Sequential(*model7)
        self.model8 = nn.Sequential(*model8)

        self.softmax = nn.Softmax(dim=1)
        self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False)
        self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear')

    def forward(self, input_l):
        conv1_2 = self.model1(self.normalize_l(input_l))
        conv2_2 = self.model2(conv1_2)
        conv3_3 = self.model3(conv2_2)
        conv4_3 = self.model4(conv3_3)
        conv5_3 = self.model5(conv4_3)
        conv6_3 = self.model6(conv5_3)
        conv7_3 = self.model7(conv6_3)
        conv8_3 = self.model8(conv7_3)
        out_reg = self.model_out(self.softmax(conv8_3))

        return self.unnormalize_ab(self.upsample4(out_reg))


# model_net = torch.load(f'weights/colorizer.pt')
model = ECCVGenerator()
model_net.load_state_dict(torch.load(f'weights/colorizer.pt'))


def resize_original(img: Image.Image):
    if img is None:
        return img
    if isinstance(img, dict):
        img = img["image"]
    
    guide_img = img.convert('L')
    w, h = guide_img.size
    scale = 256 / min(guide_img.size)
    guide_img = guide_img.resize([int(round(s*scale)) for s in guide_img.size], Image.Resampling.LANCZOS)

    guide = np.asarray(guide_img)
    h, w = guide.shape[-2:]
    rows = int(np.ceil(h/64))*64
    cols = int(np.ceil(w/64))*64
    ph_1 = (rows-h) // 2
    ph_2 = rows-h - (rows-h) // 2
    pw_1 = (cols-w) // 2
    pw_2 = cols-w - (cols-w) // 2
    guide = np.pad(guide, ((ph_1, ph_2), (pw_1, pw_2)), mode='constant', constant_values=255)
    guide_img = Image.fromarray(guide)

    return gr.Image.update(value=guide_img.convert('RGBA')), guide_img.convert('RGBA')


def colorize(img: Dict[str, Image.Image], guide_img: Image.Image, seed: int, hint_mode: str):
    if not isinstance(img, dict):
        return gr.update(visible=True)

    if hint_mode == "Roughly Hint":
        hint_mode_int = 0
    elif hint_mode == "Precisely Hint":
        hint_mode_int = 0
    
    guide_img = guide_img.convert('L')
    hint_img = img["mask"].convert('RGBA') # I modified gradio to enable it upload colorful mask

    guide = torch.from_numpy(np.asarray(guide_img))[None,None].float().to(device) / 255.0 * 2 - 1
    hint = torch.from_numpy(np.asarray(hint_img)).permute(2,0,1)[None].float().to(device) / 255.0 * 2 - 1
    hint_alpha = (hint[:,-1:] > 0.99).float()
    hint = hint[:,:3] * hint_alpha - 2 * (1 - hint_alpha)

    np.random.seed(int(seed))
    b, c, h, w = hint.shape
    h //= 8
    w //= 8
    noises = [torch.from_numpy(np.random.randn(b, c, h, w)).float().to(device) for _ in range(16+1)]

    with torch.inference_mode():
        sample = net(noises, guide, hint,  hint_mode_int)
        out = sample[0].cpu().numpy().transpose([1,2,0])
        out = np.uint8(((out + 1) / 2 * 255).clip(0,255))
    
    return Image.fromarray(out).convert('RGB')


def colorize2(img: Image.Image, model_option: str):
    if not isinstance(img, dict):
        return gr.update(visible=True)

    if hint_mode == "Model 1":
        model_int = 0
    elif hint_mode == "Model 2":
        model_int = 0

    with torch.inference_mode():
        out2 = model(input)
        out = sample[0].cpu().numpy().transpose([1,2,0])
        out = np.uint8(((out + 1) / 2 * 255).clip(0,255))
    
    return Image.fromarray(out).convert('RGB')


with gr.Blocks() as demo:
    gr.Markdown('''<center><h1>Image Colorization With Hint</h1></center>
<h2>Colorize your images/sketches with hint points.</h2>
<br />
''')
    with gr.Row():
        with gr.Column():
            inp = gr.Image(
                source="upload", 
                tool="sketch", # tool="color-sketch", # color-sketch upload image mixed with the original
                type="pil", 
                label="Sketch", 
                interactive=True,
                elem_id="sketch-canvas"
            )
            inp_store = gr.Image(
                type="pil", 
                interactive=False
            )
            inp_store.visible = False
        with gr.Column():
            seed = gr.Slider(1, 2**32, step=1, label="Seed", interactive=True, randomize=True)
            hint_mode = gr.Radio(["Roughly Hint", "Precisely Hint"], value="Roughly Hint", label="Hint Mode")
            btn = gr.Button("Run")
        with gr.Column():
            output = gr.Image(type="pil", label="Output", interactive=False)
    with gr.Row():
        with gr.Column():
            inp2 = gr.Image(
                source="upload", 
                type="pil", 
                label="Sketch",
                interactive=True
            )
            inp_store2 = gr.Image(
                type="pil", 
                interactive=False
            )
            inp_store2.visible = False
        with gr.Column():
            # seed = gr.Slider(1, 2**32, step=1, label="Seed", interactive=True, randomize=True)
            model_option = gr.Radio(["Model 1", "Model 2"], value="Model 1", label="Model 2")
            btn2 = gr.Button("Run Colorization")
        with gr.Column():
            output2 = gr.Image(type="pil", label="Output2", interactive=False)
    gr.Markdown('''
Upon uploading an image, kindly give color hints at specific points, and then run the model. Average inference time is about 52 seconds.<br />
''')
    gr.Markdown('''Authors: <a href=\"https://www.linkedin.com/in/chakshu-dhannawat/">Chakshu Dhannawat</a>, <a href=\"https://www.linkedin.com/in/navlika-singh-963120204/">Navlika Singh</a>,<a href=\"https://www.linkedin.com/in/akshat-jain-103550201/"> Akshat Jain</a>''')
    inp.upload(
        resize_original, 
        inp, 
        [inp, inp_store],
    )
    btn.click(
        colorize, 
        [inp, inp_store, seed, hint_mode],
        output
    )
    btn2.click(
        colorize2, 
        [inp, model_option],
        output2
    )

if __name__ == "__main__":
    demo.launch()