mydemo1 / app2.py
CloudAnts's picture
my
a59ff79
import os
import csv
import easyocr
import shutil
import random
import cv2
from glob import glob
from ultralytics import YOLOv10
import random
from glob import glob
from ultralytics import YOLOv10
import supervision as sva
from ultralytics import YOLOv10
import supervision as sv
import supervision as sv
from flask import Flask, request, jsonify, send_from_directory, render_template
import textwrap
app = Flask(__name__)
def enhance_contrast(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
equalized_image = cv2.equalizeHist(gray_image)
return equalized_image
def calculate_iou(bbox1, bbox2):
x1_max = max(bbox1[0], bbox2[0])
y1_max = max(bbox1[1], bbox2[1])
x2_min = min(bbox1[2], bbox2[2])
y2_min = min(bbox1[3], bbox2[3])
inter_area = max(0, x2_min - x1_max) * max(0, y2_min - y1_max)
bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
iou = inter_area / float(bbox1_area + bbox2_area - inter_area) if (bbox1_area + bbox2_area - inter_area) > 0 else 0
return iou
cropped_dir = "./app/cropped_images/"
if os.path.exists(cropped_dir):
shutil.rmtree(cropped_dir)
os.makedirs(cropped_dir, exist_ok=True)
output_dir1 = "./app/Folder1"
output_dir2 = "./app/Folder2"
output_dir3 = "./app/Folder3"
UPLOAD_FOLDER = "./app/data1"
os.makedirs(output_dir1, exist_ok=True)
os.makedirs(output_dir2, exist_ok=True)
os.makedirs(output_dir3, exist_ok=True)
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
@app.route('/')
def index():
return render_template('index3.html') # This will serve your HTML page
@app.route('/upload', methods=['POST'])
def upload_file():
if 'invoice-upload' not in request.files:
return jsonify({'error': 'No file part'}), 400
file = request.files['invoice-upload']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if file:
file_path = os.path.join(UPLOAD_FOLDER, file.filename)
file.save(file_path)
output_image, output_csv = process_image()
return jsonify({
'image_path': output_image,
'csv_path': output_csv
})
def process_image():
print("Current working directory:", os.getcwd())
# Check contents in the root directory
print("Current directory contents:", os.listdir('/'))
model = YOLOv10(f'./runs/detect/train3/weights/best (1).pt')
dataset = sv.DetectionDataset.from_yolo(
images_directory_path=f"./data/MyNewVersion5.0Dataset/valid/images",
annotations_directory_path=f"./data/MyNewVersion5.0Dataset/valid/labels",
data_yaml_path=f"./data/MyNewVersion5.0Dataset/data.yaml"
)
bounding_box_annotator = sv.BoundingBoxAnnotator()
label_annotator = sv.LabelAnnotator()
image_dir = "./app/data1"
files = os.listdir('./app/data1')
files.sort()
files = files[0:100]
print(files)
counter = 0
for ii in files:
random_image_data = cv2.imread('./app/data1/' + ii)
random_image_data1 = cv2.imread('./app/data1/' + ii)
results = model(source='./app/data1/' + ii, conf=0.07)[0]
detections = sv.Detections.from_ultralytics(results)
annotated_image = bounding_box_annotator.annotate(scene=random_image_data, detections=detections)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
save_path = "./app/Folder1/" + "detection" + ii
cv2.imwrite(save_path, annotated_image)
print(f"Annotated image saved at {save_path}")
bounding_boxes = results.boxes.xyxy.cpu().numpy()
class_ids = results.boxes.cls.cpu().numpy()
confidences = results.boxes.conf.cpu().numpy()
bounding_box_save_path = "./bounding_boxes.txt"
with open(bounding_box_save_path, 'w') as f:
for i, (bbox, class_id, confidence) in enumerate(zip(bounding_boxes, class_ids, confidences)):
x1, y1, x2, y2 = map(int, bbox)
f.write(f"Object {i + 1}: Class {class_id}, Confidence: {confidence:.2f}, "
f"Bounding box: ({x1}, {y1}, {x2}, {y2})\n")
cropped_image = random_image_data1[y1:y2, x1:x2]
cropped_image_path = os.path.join(cropped_dir, f"cropped_object_{i + 1}.jpg")
cv2.imwrite(cropped_image_path, cropped_image)
print(f"Enhanced cropped image saved at {cropped_image_path}")
print(f"Checking contents of /app/data: {bounding_box_save_path}")
print(f"Directory listing: {os.listdir('./app/Folder1')}")
print(f"Bounding box coordinates saved at {bounding_box_save_path}")
try:
reader = easyocr.Reader(['en'],recog_network='en_sample',model_storage_directory='./EasyOCR-Trainer/EasyOCR/easyocr/model', user_network_directory='./EasyOCR-Trainer/EasyOCR/user_network')
except Exception as e:
print(f"Error initializing EasyOCR Reader: {e}")
raise
reader = easyocr.Reader(
['en'],
recog_network='en_sample',
model_storage_directory='./EasyOCR-Trainer/EasyOCR/easyocr/model',
user_network_directory='./EasyOCR-Trainer/EasyOCR/user_network')
import re
input_file_path = './bounding_boxes.txt'
cropped_images_folder = './app/cropped_images/'
output_csv_path = './Folder2/' + ii + 'bounding_boxes_with_recognition.csv'
print(f"Checking contents of ./app/data: {bounding_box_save_path}")
print(f"Directory listing: {os.listdir('./app/data')}")
with open(input_file_path, 'r') as infile:
lines = infile.readlines()
with open(output_csv_path, 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerow(['Object ID', 'Bounding Box', 'Image Name', 'Recognized Text'])
for i, line in enumerate(lines):
object_id = f"Object_{i + 1}"
bounding_box_info = line.strip()
cropped_image_name = f"cropped_object_{i + 1}.jpg"
cropped_image_path = os.path.join(cropped_images_folder, cropped_image_name)
if os.path.exists(cropped_image_path):
bbox_match = re.search(r"Bounding box: \((\d+), (\d+), (\d+), (\d+)\)", bounding_box_info)
if bbox_match:
x1, y1, x2, y2 = map(int, bbox_match.groups())
detected_boxes = [[x1, x2, y1, y2]]
else:
print("No bounding box found in the info.")
cropped_image = cv2.imread(cropped_image_path, cv2.IMREAD_GRAYSCALE)
horizontal_list1, free_list1 = reader.detect(cropped_image)
free_list1 = free_list1 if free_list1 is not None else []
horizontal_list1 = [box for sublist in horizontal_list1 for box in sublist]
free_list1 = []
horizontal_list_for_recognize = detected_boxes if not horizontal_list1 else horizontal_list1
if horizontal_list1:
result = reader.recognize(cropped_image, detail=0, horizontal_list=horizontal_list1,
free_list=free_list1)
else:
result = reader.recognize(random_image_data1, detail=0, horizontal_list=detected_boxes,
free_list=free_list1)
recognized_text = ' '.join(result) if result else ''
else:
recognized_text = 'No image found'
csv_writer.writerow([object_id, bounding_box_info, cropped_image_name, recognized_text])
print(f"CSV file with recognition results saved at {output_csv_path}")
def calculate_iou(bbox1, bbox2):
x1_max = max(bbox1[0], bbox2[0])
y1_max = max(bbox1[1], bbox2[1])
x2_min = min(bbox1[2], bbox2[2])
y2_min = min(bbox1[3], bbox2[3])
inter_area = max(0, x2_min - x1_max) * max(0, y2_min - y1_max)
bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
iou = inter_area / float(bbox1_area + bbox2_area - inter_area) if (bbox1_area + bbox2_area - inter_area) > 0 else 0
return iou
image_path = "/data1" + ii
csv_file_path = output_csv_path = '/Folder2/' + ii + 'bounding_boxes_with_recognition.csv'
image = cv2.imread(image_path)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1.3
font_thickness = 2
color = (255, 0, 255)
bboxes = []
recognized_texts = []
with open(csv_file_path, 'r', encoding='utf-8') as csvfile:
csv_reader = csv.DictReader(csvfile)
for row in csv_reader:
bbox_match = re.search(r'\((\d+), (\d+), (\d+), (\d+)\)', row['Bounding Box'])
if bbox_match:
bbox = [int(bbox_match.group(i)) for i in range(1, 5)]
bboxes.append(bbox)
recognized_texts.append(row['Recognized Text'])
filtered_bboxes = []
filtered_texts = []
iou_threshold = 0.4
for i, bbox1 in enumerate(bboxes):
keep = True
for j, bbox2 in enumerate(filtered_bboxes):
if calculate_iou(bbox1, bbox2) > iou_threshold:
keep = False
break
if keep:
filtered_bboxes.append(bbox1)
filtered_texts.append(recognized_texts[i])
for bbox, recognized_text in zip(filtered_bboxes, filtered_texts):
x1, y1, x2, y2 = bbox
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
max_chars_per_line = 60
wrapped_text = textwrap.wrap(recognized_text, width=max_chars_per_line)
text_y = y1 - 10 if y1 - 10 > 10 else y1 + 10
for line in wrapped_text:
cv2.putText(image, line, (x1, text_y), font, font_scale, color, font_thickness)
text_y += int(font_scale * 20)
output_image_path = "/Folder3/" + "annotated" + ii + ".png"
cv2.imwrite(output_image_path, image)
print(f"Annotated image saved at {output_image_path}")
counter += 1
@app.route('/download_csv/<filename>')
def download_csv(filename):
return send_from_directory(output_dir2, filename, as_attachment=True)
@app.route('/download_image/<filename>')
def download_image(filename):
return send_from_directory(output_dir3, filename, as_attachment=True)