File size: 5,508 Bytes
1ae03dd
 
 
 
 
 
 
a6e15b1
1ae03dd
 
a6e15b1
 
 
 
 
 
1ae03dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e15b1
1ae03dd
 
 
 
 
 
 
 
 
 
a6e15b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae03dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import requests
import os
import pandas as pd
import datetime
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
from dotenv import load_dotenv
load_dotenv()


## TODO: write function to display the color coding of the categoies both in the df and as a guide.
#sg like:
def color_aq(val):
    color = 'green' if val else 'red'
    return f'background-color: {color}'
# but better


def get_air_quality_data(station_name):
    AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY')
    request_value = f'https://api.waqi.info/feed/{station_name}/?token={AIR_QUALITY_API_KEY}'
    answer = requests.get(request_value).json()["data"]
    forecast = answer['forecast']['daily']
    return [
        answer["time"]["s"][:10],      # Date
        int(forecast['pm25'][0]['avg']),  # avg predicted pm25
        int(forecast['pm10'][0]['avg']),  # avg predicted pm10
        max(int(forecast['pm25'][0]['avg']), int(forecast['pm10'][0]['avg'])) # avg predicted aqi
    ]

def get_air_quality_df(data):
    col_names = [
        'date',
        'pm25',
        'pm10',
        'aqi'
    ]

    new_data = pd.DataFrame(
        data
    ).T
    new_data.columns = col_names
    new_data['pm25'] = pd.to_numeric(new_data['pm25'])
    new_data['pm10'] = pd.to_numeric(new_data['pm10'])
    new_data['aqi'] = pd.to_numeric(new_data['aqi'])

    return new_data


def get_weather_data_daily(city):
    WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
    answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/today?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
    data = answer['days'][0]
    return [
        answer['address'].lower(),
        data['datetime'],
        data['tempmax'],
        data['tempmin'],
        data['temp'],
        data['feelslikemax'],
        data['feelslikemin'],
        data['feelslike'],
        data['dew'],
        data['humidity'],
        data['precip'],
        data['precipprob'],
        data['precipcover'],
        data['snow'],
        data['snowdepth'],
        data['windgust'],
        data['windspeed'],
        data['winddir'],
        data['pressure'],
        data['cloudcover'],
        data['visibility'],
        data['solarradiation'],
        data['solarenergy'],
        data['uvindex'],
        data['conditions']
    ]

def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
    WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
    end_date = f"{start_date + datetime.timedelta(days=6):%Y-%m-%d}"
    answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/{start_date}/{end_date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
    weather_data = answer['days']
    final_df = pd.DataFrame()

    for i in range(7):
        data = weather_data[i]
        list_of_data = [
        answer['address'].lower(),
        data['datetime'],
        data['tempmax'],
        data['tempmin'],
        data['temp'],
        data['feelslikemax'],
        data['feelslikemin'],
        data['feelslike'],
        data['dew'],
        data['humidity'],
        data['precip'],
        data['precipprob'],
        data['precipcover'],
        data['snow'],
        data['snowdepth'],
        data['windgust'],
        data['windspeed'],
        data['winddir'],
        data['pressure'],
        data['cloudcover'],
        data['visibility'],
        data['solarradiation'],
        data['solarenergy'],
        data['uvindex'],
        data['conditions']
    ]
        weather_df = get_weather_df(list_of_data)
        final_df = pd.concat([final_df, weather_df])
    return final_df

def get_weather_df(data):
    col_names = [
        'name',
        'date',
        'tempmax',
        'tempmin',
        'temp',
        'feelslikemax',
        'feelslikemin',
        'feelslike',
        'dew',
        'humidity',
        'precip',
        'precipprob',
        'precipcover',
        'snow',
        'snowdepth',
        'windgust',
        'windspeed',
        'winddir',
        'pressure',
        'cloudcover',
        'visibility',
        'solarradiation',
        'solarenergy',
        'uvindex',
        'conditions'
    ]

    new_data = pd.DataFrame(
        data
    ).T
    new_data.columns = col_names
    for col in col_names:
        if col not in ['name', 'date', 'conditions']:
            new_data[col] = pd.to_numeric(new_data[col])

    return new_data

def data_encoder(X):
    X.drop(columns=['date', 'name'], inplace=True)
    X['conditions'] = OrdinalEncoder().fit_transform(X[['conditions']])
    return X

def transform(df):
    df.loc[df["windgust"].isna(),'windgust'] = df['windspeed']
    df['snow'].fillna(0,inplace=True)
    df['snowdepth'].fillna(0, inplace=True)
    df['pressure'].fillna(df['pressure'].mean(), inplace=True)
    return df


def get_aplevel(temps:np.ndarray) -> list:
    boundary_list = np.array([0, 50, 100, 150, 200, 300]) # assert temps.shape == [x, 1]
    redf = np.logical_not(temps<=boundary_list) # temps.shape[0] x boundary_list.shape[0] ndarray
    hift = np.concatenate((np.roll(redf, -1)[:, :-1], np.full((temps.shape[0], 1), False)), axis = 1)
    cat = np.nonzero(np.not_equal(redf,hift))

    air_pollution_level = ['Good', 'Moderate', 'Unhealthy for sensitive Groups','Unhealthy' ,'Very Unhealthy', 'Hazardous']
    level = [air_pollution_level[el] for el in cat[1]]
    return level