Spaces:
Sleeping
Sleeping
File size: 5,508 Bytes
1ae03dd a6e15b1 1ae03dd a6e15b1 1ae03dd a6e15b1 1ae03dd a6e15b1 1ae03dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import requests
import os
import pandas as pd
import datetime
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
from dotenv import load_dotenv
load_dotenv()
## TODO: write function to display the color coding of the categoies both in the df and as a guide.
#sg like:
def color_aq(val):
color = 'green' if val else 'red'
return f'background-color: {color}'
# but better
def get_air_quality_data(station_name):
AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY')
request_value = f'https://api.waqi.info/feed/{station_name}/?token={AIR_QUALITY_API_KEY}'
answer = requests.get(request_value).json()["data"]
forecast = answer['forecast']['daily']
return [
answer["time"]["s"][:10], # Date
int(forecast['pm25'][0]['avg']), # avg predicted pm25
int(forecast['pm10'][0]['avg']), # avg predicted pm10
max(int(forecast['pm25'][0]['avg']), int(forecast['pm10'][0]['avg'])) # avg predicted aqi
]
def get_air_quality_df(data):
col_names = [
'date',
'pm25',
'pm10',
'aqi'
]
new_data = pd.DataFrame(
data
).T
new_data.columns = col_names
new_data['pm25'] = pd.to_numeric(new_data['pm25'])
new_data['pm10'] = pd.to_numeric(new_data['pm10'])
new_data['aqi'] = pd.to_numeric(new_data['aqi'])
return new_data
def get_weather_data_daily(city):
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/today?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
data = answer['days'][0]
return [
answer['address'].lower(),
data['datetime'],
data['tempmax'],
data['tempmin'],
data['temp'],
data['feelslikemax'],
data['feelslikemin'],
data['feelslike'],
data['dew'],
data['humidity'],
data['precip'],
data['precipprob'],
data['precipcover'],
data['snow'],
data['snowdepth'],
data['windgust'],
data['windspeed'],
data['winddir'],
data['pressure'],
data['cloudcover'],
data['visibility'],
data['solarradiation'],
data['solarenergy'],
data['uvindex'],
data['conditions']
]
def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
end_date = f"{start_date + datetime.timedelta(days=6):%Y-%m-%d}"
answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/{start_date}/{end_date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
weather_data = answer['days']
final_df = pd.DataFrame()
for i in range(7):
data = weather_data[i]
list_of_data = [
answer['address'].lower(),
data['datetime'],
data['tempmax'],
data['tempmin'],
data['temp'],
data['feelslikemax'],
data['feelslikemin'],
data['feelslike'],
data['dew'],
data['humidity'],
data['precip'],
data['precipprob'],
data['precipcover'],
data['snow'],
data['snowdepth'],
data['windgust'],
data['windspeed'],
data['winddir'],
data['pressure'],
data['cloudcover'],
data['visibility'],
data['solarradiation'],
data['solarenergy'],
data['uvindex'],
data['conditions']
]
weather_df = get_weather_df(list_of_data)
final_df = pd.concat([final_df, weather_df])
return final_df
def get_weather_df(data):
col_names = [
'name',
'date',
'tempmax',
'tempmin',
'temp',
'feelslikemax',
'feelslikemin',
'feelslike',
'dew',
'humidity',
'precip',
'precipprob',
'precipcover',
'snow',
'snowdepth',
'windgust',
'windspeed',
'winddir',
'pressure',
'cloudcover',
'visibility',
'solarradiation',
'solarenergy',
'uvindex',
'conditions'
]
new_data = pd.DataFrame(
data
).T
new_data.columns = col_names
for col in col_names:
if col not in ['name', 'date', 'conditions']:
new_data[col] = pd.to_numeric(new_data[col])
return new_data
def data_encoder(X):
X.drop(columns=['date', 'name'], inplace=True)
X['conditions'] = OrdinalEncoder().fit_transform(X[['conditions']])
return X
def transform(df):
df.loc[df["windgust"].isna(),'windgust'] = df['windspeed']
df['snow'].fillna(0,inplace=True)
df['snowdepth'].fillna(0, inplace=True)
df['pressure'].fillna(df['pressure'].mean(), inplace=True)
return df
def get_aplevel(temps:np.ndarray) -> list:
boundary_list = np.array([0, 50, 100, 150, 200, 300]) # assert temps.shape == [x, 1]
redf = np.logical_not(temps<=boundary_list) # temps.shape[0] x boundary_list.shape[0] ndarray
hift = np.concatenate((np.roll(redf, -1)[:, :-1], np.full((temps.shape[0], 1), False)), axis = 1)
cat = np.nonzero(np.not_equal(redf,hift))
air_pollution_level = ['Good', 'Moderate', 'Unhealthy for sensitive Groups','Unhealthy' ,'Very Unhealthy', 'Hazardous']
level = [air_pollution_level[el] for el in cat[1]]
return level |