Spaces:
Sleeping
Sleeping
adjoint-bass
commited on
Commit
·
ba2ab2f
1
Parent(s):
a6e15b1
updated app and removed unused functions
Browse files- app.py +3 -2
- functions.py +0 -8
- requirements.txt +2 -1
app.py
CHANGED
@@ -4,15 +4,16 @@ import joblib
|
|
4 |
import pandas as pd
|
5 |
from datetime import timedelta, datetime
|
6 |
from functions import get_weather_data_weekly, data_encoder, get_aplevel
|
|
|
7 |
|
8 |
|
9 |
def fancy_header(text, font_size=24):
|
10 |
res = f'<p style="color:#ff5f27; font-size: {font_size}px;text-align:center">{text}</p>'
|
11 |
st.markdown(res, unsafe_allow_html=True)
|
12 |
|
13 |
-
|
14 |
st.title('Air Quality Prediction Project 🌩')
|
15 |
-
st.image(
|
16 |
st.write(36 * "-")
|
17 |
|
18 |
st.markdown("# This is a final project in the course ID2223 Scalable Machine Learning and Deep Learning :computer:")
|
|
|
4 |
import pandas as pd
|
5 |
from datetime import timedelta, datetime
|
6 |
from functions import get_weather_data_weekly, data_encoder, get_aplevel
|
7 |
+
from PIL import Image
|
8 |
|
9 |
|
10 |
def fancy_header(text, font_size=24):
|
11 |
res = f'<p style="color:#ff5f27; font-size: {font_size}px;text-align:center">{text}</p>'
|
12 |
st.markdown(res, unsafe_allow_html=True)
|
13 |
|
14 |
+
vienna_image = Image.open('vienna.jpg')
|
15 |
st.title('Air Quality Prediction Project 🌩')
|
16 |
+
st.image(vienna_image, use_column_width='auto')
|
17 |
st.write(36 * "-")
|
18 |
|
19 |
st.markdown("# This is a final project in the course ID2223 Scalable Machine Learning and Deep Learning :computer:")
|
functions.py
CHANGED
@@ -163,14 +163,6 @@ def data_encoder(X):
|
|
163 |
X['conditions'] = OrdinalEncoder().fit_transform(X[['conditions']])
|
164 |
return X
|
165 |
|
166 |
-
def transform(df):
|
167 |
-
df.loc[df["windgust"].isna(),'windgust'] = df['windspeed']
|
168 |
-
df['snow'].fillna(0,inplace=True)
|
169 |
-
df['snowdepth'].fillna(0, inplace=True)
|
170 |
-
df['pressure'].fillna(df['pressure'].mean(), inplace=True)
|
171 |
-
return df
|
172 |
-
|
173 |
-
|
174 |
def get_aplevel(temps:np.ndarray) -> list:
|
175 |
boundary_list = np.array([0, 50, 100, 150, 200, 300]) # assert temps.shape == [x, 1]
|
176 |
redf = np.logical_not(temps<=boundary_list) # temps.shape[0] x boundary_list.shape[0] ndarray
|
|
|
163 |
X['conditions'] = OrdinalEncoder().fit_transform(X[['conditions']])
|
164 |
return X
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
def get_aplevel(temps:np.ndarray) -> list:
|
167 |
boundary_list = np.array([0, 50, 100, 150, 200, 300]) # assert temps.shape == [x, 1]
|
168 |
redf = np.logical_not(temps<=boundary_list) # temps.shape[0] x boundary_list.shape[0] ndarray
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ numpy
|
|
4 |
joblib
|
5 |
python-dotenv
|
6 |
xgboost
|
7 |
-
optuna
|
|
|
|
4 |
joblib
|
5 |
python-dotenv
|
6 |
xgboost
|
7 |
+
optuna
|
8 |
+
Pillow
|