Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import spaces | |
from transformers import AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
from llama_cpp import Llama | |
# Set an environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">CyberNative-AI/Colibri_8b_v0.1</h1> | |
<p>This Space demonstrates the CyberSecurity-tuned model <a href="https://huggingface.co/CyberNative-AI/Colibri_8b_v0.1"><b>Colibri_8b_v0.1</b></a>. | |
</div> | |
''' | |
LICENSE = """ | |
<p/> | |
--- | |
Colibri v0.1 is built on top of Dolphin Llama 3 | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<img src="https://huggingface.co/CyberNative-AI/Colibri_8b_v0.1/resolve/main/cybernative_ai_colibri_logo.jpeg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Colibri_v0.1 Dolphin Meta llama3</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: white; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
""" | |
def chat_llama3_8b(message: str, | |
history: list, | |
temperature: float, | |
max_new_tokens: int | |
) -> str: | |
""" | |
Generate a streaming response using the llama3-8b model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
conversation = [] | |
conversation.append({"role": "system", "content": "You are Colibri, an advanced cybersecurity AI assistant developed by CyberNative AI."}) | |
for user, assistant in history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
llm = Llama.from_pretrained( | |
repo_id="CyberNative-AI/Colibri_8b_v0.1_q5_gguf", | |
filename="*Q5_K_M.gguf", | |
chat_format="chatml", | |
verbose=False, | |
max_tokens=max_new_tokens, | |
stop=["<|im_end|>"] | |
) | |
response=llm.create_chat_completion(messages=conversation, temperature=temperature) | |
# Access the first (and likely only) choice in the response | |
choice = response['choices'][0] | |
# Extract the text content from the message within the choice | |
text_response = choice['message']['content'] | |
yield text_response | |
# Gradio block | |
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.ChatInterface( | |
fn=chat_llama3_8b, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.6, | |
label="Temperature", | |
render=False), | |
gr.Slider(minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False ), | |
], | |
examples=[ | |
['What are the two main methods used in the research to collect DKIM information?'], | |
['What is the primary purpose of OS fingerprinting using tools like Nmap, and why might it not always be 100% accurate?'], | |
['What is 9,000 * 9,000?'], | |
['What technique can be used to enumerate SMB shares within a Windows environment from a Windows client?'], | |
['What is the primary benefit of interleaving in cybersecurity education and training?'] | |
], | |
cache_examples=False, | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch() |