Ruslan
Clone Leaderboard
55ece2a
raw
history blame
8.48 kB
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
ABOUT_TEXT,
TITLE,
Training_Dataset,
Testing_Type
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
with gr.Tabs(elem_classes="leaderboard-tabs") as leaderboard_tabs:
for testing_type in Testing_Type:
with gr.TabItem("Average Scores" if testing_type.value == "avg" else testing_type.name, elem_id=f"{testing_type.value}_Leaderboard"):
if testing_type.value == "avg":
gr.Markdown("The scores presented in this tab are averaged scores across all datasets.")
try:
leaderboard = Leaderboard(
value=dataframe[dataframe["Testing Type"] == testing_type.name],
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model_name.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(AutoEvalColumn.training_dataset_type.name, type="checkboxgroup", label="Training Dataset"),
ColumnFilter(
AutoEvalColumn.model_parameters.name,
type="slider",
min=0,
max=10000,
default=["0", "100"],
label="Select the number of parameters (M)",
),
],
bool_checkboxgroup_label="Hide Models",
interactive=False,
)
except:
gr.Markdown("There are no submissions for this testing type yet.")
def init_submissions():
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
model_link_textbox = gr.Textbox(label="Link to Model")
model_backbone_textbox = gr.Dropdown(
choices=["Original"],
label="Model Backbone",
value="Original",
allow_custom_value=True,
)
model_parameter_number = gr.Number(label="Model Parameter Count (M)", precision=1, minimum=0)
precision = gr.Dropdown(
choices=[i.name for i in Precision],
label="Precision",
multiselect=False,
value="float32",
interactive=True,
)
paper_name_textbox = gr.Textbox(label="Paper Name")
paper_link_textbox = gr.Textbox(label="Link To Paper")
with gr.Column():
training_dataset = gr.Dropdown(
choices=[i.value for i in Training_Dataset if i.value != Training_Dataset.Other.value],
label="Training Dataset",
multiselect=False,
value=Training_Dataset.XCL.value,
interactive=True,
allow_custom_value=True,
)
testing_type = gr.Dropdown(
choices=[i.name for i in Testing_Type],
label="Tested on",
multiselect=False,
value=Testing_Type.AVG.name,
interactive=True,
)
cmap_value = gr.Number(label="cmAP Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)
auroc_value = gr.Number(label="AUROC Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)
t1acc_value = gr.Number(label="T1-Acc Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
model_link_textbox,
model_backbone_textbox,
precision,
model_parameter_number,
paper_name_textbox,
paper_link_textbox,
training_dataset,
testing_type,
cmap_value,
auroc_value,
t1acc_value,
],
outputs=submission_result,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Leaderboard", elem_id="leaderboard-tab-table", id=0):
init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ About", elem_id="leaderboard-tab-table", id=2):
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="leaderboard-tab-table", id=3):
init_submissions()
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch()