|
import gradio as gr |
|
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
ABOUT_TEXT, |
|
TITLE, |
|
Training_Dataset, |
|
Testing_Type |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
Precision |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
|
|
try: |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
try: |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
|
|
( |
|
finished_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
def init_leaderboard(dataframe): |
|
if dataframe is None or dataframe.empty: |
|
raise ValueError("Leaderboard DataFrame is empty or None.") |
|
|
|
with gr.Tabs(elem_classes="leaderboard-tabs") as leaderboard_tabs: |
|
for testing_type in Testing_Type: |
|
with gr.TabItem("Average Scores" if testing_type.value == "avg" else testing_type.name, elem_id=f"{testing_type.value}_Leaderboard"): |
|
if testing_type.value == "avg": |
|
gr.Markdown("The scores presented in this tab are averaged scores across all datasets.") |
|
|
|
try: |
|
leaderboard = Leaderboard( |
|
value=dataframe[dataframe["Testing Type"] == testing_type.name], |
|
datatype=[c.type for c in fields(AutoEvalColumn)], |
|
select_columns=SelectColumns( |
|
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], |
|
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], |
|
label="Select Columns to Display:", |
|
), |
|
search_columns=[AutoEvalColumn.model_name.name], |
|
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], |
|
filter_columns=[ |
|
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), |
|
ColumnFilter(AutoEvalColumn.training_dataset_type.name, type="checkboxgroup", label="Training Dataset"), |
|
ColumnFilter( |
|
AutoEvalColumn.model_parameters.name, |
|
type="slider", |
|
min=0, |
|
max=10000, |
|
default=["0", "100"], |
|
label="Select the number of parameters (M)", |
|
), |
|
], |
|
bool_checkboxgroup_label="Hide Models", |
|
interactive=False, |
|
) |
|
except: |
|
gr.Markdown("There are no submissions for this testing type yet.") |
|
|
|
def init_submissions(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
model_link_textbox = gr.Textbox(label="Link to Model") |
|
model_backbone_textbox = gr.Dropdown( |
|
choices=["Original"], |
|
label="Model Backbone", |
|
value="Original", |
|
allow_custom_value=True, |
|
) |
|
|
|
model_parameter_number = gr.Number(label="Model Parameter Count (M)", precision=1, minimum=0) |
|
|
|
precision = gr.Dropdown( |
|
choices=[i.name for i in Precision], |
|
label="Precision", |
|
multiselect=False, |
|
value="float32", |
|
interactive=True, |
|
) |
|
paper_name_textbox = gr.Textbox(label="Paper Name") |
|
paper_link_textbox = gr.Textbox(label="Link To Paper") |
|
|
|
|
|
with gr.Column(): |
|
training_dataset = gr.Dropdown( |
|
choices=[i.value for i in Training_Dataset if i.value != Training_Dataset.Other.value], |
|
label="Training Dataset", |
|
multiselect=False, |
|
value=Training_Dataset.XCL.value, |
|
interactive=True, |
|
allow_custom_value=True, |
|
) |
|
testing_type = gr.Dropdown( |
|
choices=[i.name for i in Testing_Type], |
|
label="Tested on", |
|
multiselect=False, |
|
value=Testing_Type.AVG.name, |
|
interactive=True, |
|
) |
|
cmap_value = gr.Number(label="cmAP Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01) |
|
auroc_value = gr.Number(label="AUROC Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01) |
|
t1acc_value = gr.Number(label="T1-Acc Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01) |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
fn=add_new_eval, |
|
inputs=[ |
|
model_name_textbox, |
|
model_link_textbox, |
|
model_backbone_textbox, |
|
precision, |
|
model_parameter_number, |
|
paper_name_textbox, |
|
paper_link_textbox, |
|
training_dataset, |
|
testing_type, |
|
cmap_value, |
|
auroc_value, |
|
t1acc_value, |
|
], |
|
outputs=submission_result, |
|
) |
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
Leaderboard", elem_id="leaderboard-tab-table", id=0): |
|
init_leaderboard(LEADERBOARD_DF) |
|
|
|
with gr.TabItem("π About", elem_id="leaderboard-tab-table", id=2): |
|
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("π Submit here! ", elem_id="leaderboard-tab-table", id=3): |
|
init_submissions() |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
scheduler.start() |
|
demo.launch() |
|
|