Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import torch | |
class EarlyStopping: | |
"""Early stops the training if validation loss doesn't improve after a given patience.""" | |
def __init__(self, patience=7, verbose=False): | |
""" | |
Args: | |
patience (int): How long to wait after last time validation loss improved. | |
Default: 7 | |
verbose (bool): If True, prints a message for each validation loss improvement. | |
Default: False | |
""" | |
self.patience = patience | |
self.verbose = verbose | |
self.counter = 0 | |
self.best_score = None | |
self.early_stop = False | |
self.val_loss_min = np.Inf | |
def __call__(self, val_loss, model, args): | |
if args.tuning_metric == "loss": | |
score = -val_loss | |
else: | |
score = val_loss | |
if self.best_score is None: | |
self.best_score = score | |
self.save_checkpoint(val_loss, model, args) | |
elif score < self.best_score: | |
self.counter += 1 | |
print(f"EarlyStopping counter: {self.counter} out of {self.patience}") | |
if self.counter >= self.patience: | |
self.early_stop = True | |
else: | |
self.best_score = score | |
self.save_checkpoint(val_loss, model, args) | |
self.counter = 0 | |
def save_checkpoint(self, val_loss, model, args): | |
"""Saves model when validation loss decreases or accuracy/f1 increases.""" | |
if self.verbose: | |
if args.tuning_metric == "loss": | |
print(f"Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...") | |
else: | |
print( | |
f"{args.tuning_metric} increased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ..." | |
) | |
model.save_pretrained(args.model_dir) | |
torch.save(args, os.path.join(args.model_dir, "training_args.bin")) | |
self.val_loss_min = val_loss | |
# # Save model checkpoint (Overwrite) | |
# if not os.path.exists(self.args.model_dir): | |
# os.makedirs(self.args.model_dir) | |
# model_to_save = self.model.module if hasattr(self.model, 'module') else self.model | |
# model_to_save.save_pretrained(self.args.model_dir) | |
# # Save training arguments together with the trained model | |
# torch.save(self.args, os.path.join(self.args.model_dir, 'training_args.bin')) | |
# logger.info("Saving model checkpoint to %s", self.args.model_dir) | |