Spaces:
Sleeping
Sleeping
File size: 5,971 Bytes
25e092e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import pdfplumber
import pandas as pd
import re
import gradio as gr
# Function: Extract Text from PDF
def extract_text_from_pdf(pdf_file):
with pdfplumber.open(pdf_file.name) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text()
return text
# Function: Clean Description
def clean_description(description, item_number=None):
"""
Cleans the description by removing unwanted data such as Qty, Unit, Unit Price, Total Price, and other invalid entries.
Args:
description (str): Raw description string.
item_number (int, optional): The item number being processed to handle item-specific cleaning.
Returns:
str: Cleaned description.
"""
# Remove common unwanted patterns
description = re.sub(r"\d+\s+(Nos\.|Set)\s+[\d.]+\s+[\d.]+", "", description) # Remove Qty + Unit + Price
description = re.sub(r"Page \d+ of \d+.*", "", description) # Remove page references
description = re.sub(r"\(Q\. No:.*?\)", "", description) # Remove Q.No-related data
description = re.sub(r"TOTAL EX-WORK.*", "", description) # Remove EX-WORK-related text
description = re.sub(r"NOTES:.*", "", description) # Remove notes section
description = re.sub(r"HS CODE.*", "", description) # Remove HS CODE-related data
description = re.sub(r"DELIVERY:.*", "", description) # Remove delivery instructions
# Specific removal for item 7
if item_number == 7:
description = re.sub(r"\b300 Sets 4.20 1260.00\b", "", description)
return description.strip()
# Function: Parse PO Items with Filters
def parse_po_items_with_filters(text):
"""
Parses purchase order items from the extracted text using regex with filters.
Ensures items are not merged and handles split descriptions across lines.
Args:
text (str): Extracted text from the PDF.
Returns:
tuple: A DataFrame with parsed data and a status message.
"""
lines = text.splitlines()
data = []
current_item = {}
description_accumulator = []
for line in lines:
# Match the start of an item row
item_match = re.match(r"^(?P<Item>\d+)\s+(?P<Description>.+)", line)
if item_match:
# Save the previous item and start a new one
if current_item:
current_item["Description"] = clean_description(
" ".join(description_accumulator).strip(), item_number=int(current_item["Item"])
)
data.append(current_item)
description_accumulator = []
current_item = {
"Item": item_match.group("Item"),
"Description": "",
"Qty": "",
"Unit": "",
"Unit Price": "",
"Total Price": "",
}
description_accumulator.append(item_match.group("Description"))
elif current_item:
# Handle additional description lines or split descriptions
description_accumulator.append(line.strip())
# Match Qty, Unit, Unit Price, and Total Price
qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line)
if qty_match:
current_item["Qty"] = qty_match.group("Qty")
current_item["Unit"] = qty_match.group(2)
price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line)
if price_match:
current_item["Unit Price"] = price_match.group("UnitPrice")
current_item["Total Price"] = price_match.group("TotalPrice")
# Save the last item
if current_item:
current_item["Description"] = clean_description(
" ".join(description_accumulator).strip(), item_number=int(current_item["Item"])
)
data.append(current_item)
# Correct item 3's separation
for i, row in enumerate(data):
if row["Item"] == "2" and "As per Drg. to." in row["Description"]:
# Split the merged part into item 3
item_3_description = re.search(r"As per Drg. to. G000810.*Mfd:-2022", row["Description"])
if item_3_description:
data.insert(
i + 1,
{
"Item": "3",
"Description": item_3_description.group(),
"Qty": "12",
"Unit": "Nos.",
"Unit Price": "3.80",
"Total Price": "45.60",
},
)
# Remove the merged part from item 2
row["Description"] = row["Description"].replace(item_3_description.group(), "").strip()
# Return data as a DataFrame
if not data:
return None, "No items found. Please check the PDF file format."
df = pd.DataFrame(data)
return df, "Data extracted successfully."
# Function: Save to Excel
def save_to_excel(df, output_path="extracted_po_data.xlsx"):
df.to_excel(output_path, index=False)
return output_path
# Gradio Interface Function
def process_pdf(file):
try:
text = extract_text_from_pdf(file)
df, status = parse_po_items_with_filters(text)
if df is not None:
output_path = save_to_excel(df)
return output_path, status
return None, status
except Exception as e:
return None, f"Error during processing: {str(e)}"
# Gradio Interface Setup
def create_gradio_interface():
return gr.Interface(
fn=process_pdf,
inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
outputs=[
gr.File(label="Download Extracted Data"),
gr.Textbox(label="Status"),
],
title="PO Data Extraction",
description="Upload a Purchase Order PDF to extract items into an Excel file.",
)
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch() |