Spaces:
Sleeping
Sleeping
import pdfplumber | |
import pandas as pd | |
import re | |
# Function: Extract Text from PDF | |
def extract_text_from_pdf(pdf_file): | |
with pdfplumber.open(pdf_file.name) as pdf: | |
text = "" | |
for page in pdf.pages: | |
text += page.extract_text() | |
return text | |
# Function: Parse PO Items | |
def parse_po_items_with_filters(text): | |
""" | |
Parses purchase order items from the extracted text using regex with filters. | |
Handles split descriptions across lines and filters unwanted text. | |
""" | |
lines = text.splitlines() | |
data = [] | |
current_item = {} | |
description_accumulator = [] | |
for line in lines: | |
# Match the start of an item row | |
item_match = re.match(r"^(?P<Item>\d+)\s+(?P<Description>.+)", line) | |
if item_match: | |
# Save the previous item and start a new one | |
if current_item: | |
current_item["Description"] = " ".join(description_accumulator).strip() | |
data.append(current_item) | |
description_accumulator = [] | |
current_item = { | |
"Item": item_match.group("Item"), | |
"Description": "", | |
"Qty": "", | |
"Unit": "", | |
"Unit Price": "", | |
"Total Price": "", | |
} | |
description_accumulator.append(item_match.group("Description")) | |
elif current_item: | |
# Handle additional description lines or split descriptions | |
description_accumulator.append(line.strip()) | |
# Match Qty, Unit, Unit Price, and Total Price | |
qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line) | |
if qty_match: | |
current_item["Qty"] = qty_match.group("Qty") | |
current_item["Unit"] = qty_match.group(2) | |
price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line) | |
if price_match: | |
current_item["Unit Price"] = price_match.group("UnitPrice") | |
current_item["Total Price"] = price_match.group("TotalPrice") | |
# Save the last item | |
if current_item: | |
current_item["Description"] = " ".join(description_accumulator).strip() | |
data.append(current_item) | |
if not data: | |
return None, "No items found. Please check the PDF file format." | |
df = pd.DataFrame(data) | |
return df, "Data extracted successfully." | |
# Function: Save to Excel | |
def save_to_excel(df, output_path="federal_electric_extracted_data.xlsx"): | |
df.to_excel(output_path, index=False) | |
return output_path | |
# Main function to process PDF | |
def process_pdf(file): | |
try: | |
text = extract_text_from_pdf(file) | |
df, status = parse_po_items_with_filters(text) | |
if df is not None: | |
output_path = save_to_excel(df) | |
return output_path, status | |
return None, status | |
except Exception as e: | |
return None, f"Error during processing: {str(e)}" | |