DSatishchandra commited on
Commit
eb27df4
·
verified ·
1 Parent(s): cf677a1

Update bhel.py

Browse files
Files changed (1) hide show
  1. bhel.py +75 -102
bhel.py CHANGED
@@ -1,110 +1,83 @@
1
  import pdfplumber
2
  import pandas as pd
3
  import re
4
- import gradio as gr
5
 
6
- def extract_data(pdf_file):
7
- """
8
- Extract data from the uploaded PDF for dynamic ranges (e.g., 10 to n).
9
- """
10
- data = []
11
- columns = ["SI No", "Material Description", "Unit", "Quantity", "Dely Qty", "Dely Date", "Unit Rate", "Value"]
12
-
13
- start_si = 10 # Start from SI No 10
14
- end_si = None # Dynamically detect the end SI No
15
-
16
- with pdfplumber.open(pdf_file) as pdf:
17
  for page in pdf.pages:
18
- full_text = page.extract_text() # Get the text content for the page
19
- lines = full_text.splitlines() if full_text else []
20
-
21
- for line in lines:
22
- try:
23
- # Parse the first column for SI No
24
- si_no_match = re.match(r"^\s*(\d+)\s", line)
25
- if not si_no_match:
26
- continue
27
-
28
- si_no = int(si_no_match.group(1))
29
- # Dynamically set the end SI No if higher SI Nos are found
30
- if end_si is None or si_no > end_si:
31
- end_si = si_no
32
-
33
- if si_no < start_si:
34
- continue # Skip rows below the start SI No
35
-
36
- # Extract Material Description and details dynamically
37
- material_desc = extract_material_description(full_text, si_no)
38
-
39
- # Extract remaining fields
40
- parts = line.split()
41
- unit = parts[3]
42
- quantity = int(parts[4])
43
- dely_qty = int(parts[5])
44
- dely_date = parts[6]
45
- unit_rate = float(parts[7])
46
- value = float(parts[8])
47
-
48
- # Append row data
49
- data.append([si_no, material_desc, unit, quantity, dely_qty, dely_date, unit_rate, value])
50
-
51
- except (ValueError, IndexError):
52
- # Skip invalid rows or rows with missing data
53
- continue
54
 
55
- # Convert data to DataFrame and save as Excel
56
- df = pd.DataFrame(data, columns=columns)
57
- excel_path = "/tmp/Extracted_PO_Data_Dynamic.xlsx"
58
- df.to_excel(excel_path, index=False)
59
- return excel_path
60
-
61
- def extract_material_description(full_text, si_no):
62
  """
63
- Extract Material Description, including Material Number, HSN Code, and IGST, using unique patterns.
 
64
  """
65
- material_desc = ""
66
-
67
- # Match the specific SI No row to extract details
68
- si_no_pattern = rf"{si_no}\s+(BPS\s+\d+).*?Material\s+Number:\s+(\d+)"
69
- match = re.search(si_no_pattern, full_text, re.DOTALL)
70
- if match:
71
- bps_code = match.group(1)
72
- material_number = match.group(2)
73
- material_desc += f"{bps_code}\nMaterial Number: {material_number}\n"
74
-
75
- # Extract HSN Code
76
- hsn_code_match = re.search(r"HSN\s+Code:\s*(\d+)", full_text)
77
- if hsn_code_match:
78
- hsn_code = hsn_code_match.group(1)
79
- material_desc += f"HSN Code: {hsn_code}\n"
80
- else:
81
- material_desc += "HSN Code: Not Found\n"
82
-
83
- # Extract IGST
84
- igst_match = re.search(r"IGST\s*:\s*(\d+)\s*%", full_text)
85
- if igst_match:
86
- igst = igst_match.group(1)
87
- material_desc += f"IGST: {igst} %"
88
- else:
89
- material_desc += "IGST: Not Found"
90
-
91
- return material_desc.strip()
92
-
93
- # Gradio Interface
94
- def gradio_interface(pdf_file):
95
- """
96
- Interface function for Gradio to process the PDF and return the Excel file.
97
- """
98
- return extract_data(pdf_file.name)
99
-
100
- # Define Gradio interface
101
- interface = gr.Interface(
102
- fn=gradio_interface,
103
- inputs=gr.File(label="Upload PDF"),
104
- outputs=gr.File(label="Download Extracted Excel"),
105
- title="Dynamic BHEL PO Data Extractor",
106
- description="Upload a PDF to extract accurate Material Numbers and related data dynamically into an Excel file."
107
- )
108
-
109
- if __name__ == "__main__":
110
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import pdfplumber
2
  import pandas as pd
3
  import re
 
4
 
5
+ # Function: Extract Text from PDF
6
+ def extract_text_from_pdf(pdf_file):
7
+ with pdfplumber.open(pdf_file.name) as pdf:
8
+ text = ""
 
 
 
 
 
 
 
9
  for page in pdf.pages:
10
+ text += page.extract_text()
11
+ return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ # Function: Parse PO Items
14
+ def parse_po_items(text):
 
 
 
 
 
15
  """
16
+ Parses purchase order items from the extracted text.
17
+ Handles split descriptions across lines and filters unwanted text.
18
  """
19
+ lines = text.splitlines()
20
+ data = []
21
+ current_item = {}
22
+ description_accumulator = []
23
+
24
+ for line in lines:
25
+ # Match the start of an item row
26
+ item_match = re.match(r"^(?P<Item>\d+)\s+(?P<Description>.+)", line)
27
+ if item_match:
28
+ # Save the previous item and start a new one
29
+ if current_item:
30
+ current_item["Description"] = " ".join(description_accumulator).strip()
31
+ data.append(current_item)
32
+ description_accumulator = []
33
+
34
+ current_item = {
35
+ "Item": item_match.group("Item"),
36
+ "Description": "",
37
+ "Qty": "",
38
+ "Unit": "",
39
+ "Unit Price": "",
40
+ "Total Price": "",
41
+ }
42
+ description_accumulator.append(item_match.group("Description"))
43
+ elif current_item:
44
+ # Handle additional description lines or split descriptions
45
+ description_accumulator.append(line.strip())
46
+
47
+ # Match Qty, Unit, Unit Price, and Total Price
48
+ qty_match = re.search(r"(?P<Qty>\d+)\s+(Nos\.|Set)", line)
49
+ if qty_match:
50
+ current_item["Qty"] = qty_match.group("Qty")
51
+ current_item["Unit"] = qty_match.group(2)
52
+
53
+ price_match = re.search(r"(?P<UnitPrice>[\d.]+)\s+(?P<TotalPrice>[\d.]+)$", line)
54
+ if price_match:
55
+ current_item["Unit Price"] = price_match.group("UnitPrice")
56
+ current_item["Total Price"] = price_match.group("TotalPrice")
57
+
58
+ # Save the last item
59
+ if current_item:
60
+ current_item["Description"] = " ".join(description_accumulator).strip()
61
+ data.append(current_item)
62
+
63
+ if not data:
64
+ return None, "No items found. Please check the PDF file format."
65
+ df = pd.DataFrame(data)
66
+ return df, "Data extracted successfully."
67
+
68
+ # Function: Save to Excel
69
+ def save_to_excel(df, output_path="bhel_extracted_data.xlsx"):
70
+ df.to_excel(output_path, index=False)
71
+ return output_path
72
+
73
+ # Main function to process PDF
74
+ def process_pdf(file):
75
+ try:
76
+ text = extract_text_from_pdf(file)
77
+ df, status = parse_po_items(text)
78
+ if df is not None:
79
+ output_path = save_to_excel(df)
80
+ return output_path, status
81
+ return None, status
82
+ except Exception as e:
83
+ return None, f"Error during processing: {str(e)}"