Files changed (1) hide show
  1. app.py +41 -96
app.py CHANGED
@@ -1,108 +1,53 @@
1
- import pdfplumber
2
  import pandas as pd
3
  import gradio as gr
4
  import re
5
- import tempfile
6
 
7
- # Define function to extract data
8
- def extract_data(pdf_file):
9
- data = []
10
- columns = ["Purchase Order No", "Date", "SI No", "Material Description", "Unit", "Quantity", "Dely Qty", "Dely Date", "Unit Rate", "Value"]
11
-
12
- # Set default values
13
- purchase_order_no = "Not Found"
14
- purchase_order_date = "Not Found"
15
-
16
- try:
17
- with pdfplumber.open(pdf_file) as pdf:
18
- for page in pdf.pages:
19
- text = page.extract_text()
20
-
21
- if not text:
22
- continue # Skip pages without text
23
-
24
- lines = text.splitlines()
25
-
26
- # Attempt to dynamically extract Purchase Order No and Date from the first page
27
- for line in lines:
28
- # Search for Purchase Order No
29
- po_match = re.search(r'Purchase Order No[:\s]+(\d+)', line, re.IGNORECASE)
30
- if po_match:
31
- purchase_order_no = po_match.group(1)
32
-
33
- # Search for Date
34
- date_match = re.search(r'Date[:\s]+(\d{2}\.\d{2}\.\d{4})', line, re.IGNORECASE)
35
- if date_match:
36
- purchase_order_date = date_match.group(1)
37
-
38
- # Stop if both values are found
39
- if purchase_order_no != "Not Found" and purchase_order_date != "Not Found":
40
- break
41
-
42
- # Process lines to extract row data, looking for rows that start with SI No
43
- for line in lines:
44
- try:
45
- # Match lines that start with an SI number (e.g., "10", "20")
46
- si_no_match = re.match(r'^(\d+)\s', line)
47
- if si_no_match:
48
- parts = line.split()
49
-
50
- # Extract SI No
51
- si_no = parts[0]
52
-
53
- # Extract Material Number and format the Material Description
54
- material_number = parts[2] if len(parts) > 2 else "Unknown"
55
- material_desc = f"BPS 017507\nMaterial Number: {material_number}\nHSN Code: 8310\nIGST: 18%"
56
-
57
- # Extract Unit, Quantity, Dely Qty, Dely Date, Unit Rate, and Value
58
- unit = parts[3] if len(parts) > 3 else "NO" # Default to "NO" if not found
59
- quantity = int(parts[4]) if len(parts) > 4 else 0
60
- dely_qty = int(parts[5]) if len(parts) > 5 else 0
61
- dely_date = parts[6] if len(parts) > 6 else "Unknown"
62
- unit_rate = float(parts[7]) if len(parts) > 7 else 0.0
63
- value = float(parts[8]) if len(parts) > 8 else 0.0
64
-
65
- # Append extracted data in the specified order
66
- data.append([
67
- purchase_order_no,
68
- purchase_order_date,
69
- si_no,
70
- material_desc,
71
- unit,
72
- quantity,
73
- dely_qty,
74
- dely_date,
75
- unit_rate,
76
- value
77
- ])
78
- except (ValueError, IndexError) as e:
79
- print(f"Error processing line: {line} - {e}")
80
- continue # Skip lines that do not match the expected format
81
-
82
- # Convert data to DataFrame and save as Excel
83
- df = pd.DataFrame(data, columns=columns)
84
-
85
- # Generate a temporary file path for the Excel file
86
- with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp_file:
87
- excel_path = tmp_file.name
88
- df.to_excel(excel_path, index=False)
89
-
90
- except Exception as e:
91
- print(f"An error occurred while processing the PDF: {e}")
92
- return None
93
-
94
- # Log warning if data was not found for Purchase Order No or Date
95
- if purchase_order_no == "Not Found" or purchase_order_date == "Not Found":
96
- print("Warning: 'Purchase Order No' or 'Date' was not found in the PDF.")
97
 
98
- return excel_path
99
 
100
  # Set up Gradio interface
101
  iface = gr.Interface(
102
  fn=extract_data,
103
- inputs=gr.File(label="Upload PDF"),
104
- outputs=gr.File(label="Download Excel"),
105
- title="PDF Data Extractor"
106
  )
107
 
108
  # Launch the app
 
 
1
  import pandas as pd
2
  import gradio as gr
3
  import re
 
4
 
5
+ # Define function to extract data from Excel file
6
+ def extract_data(excel_file):
7
+ # Load the Excel file
8
+ df = pd.read_excel(excel_file)
9
+
10
+ # Attempt to extract 'Purchase Order No' and 'Date' from the first few rows
11
+ for _, row in df.iterrows():
12
+ # Search for Purchase Order No pattern in the row data
13
+ po_match = re.search(r'Purchase Order No[:\s]+(\w+)', str(row), re.IGNORECASE)
14
+ if po_match:
15
+ purchase_order_no = po_match.group(1)
16
+
17
+ # Search for Date pattern in the row data (e.g., "Date: 10.10.2023" or "10/10/2023")
18
+ date_match = re.search(r'Date[:\s]+(\d{2}[\./-]\d{2}[\./-]\d{4})', str(row), re.IGNORECASE)
19
+ if date_match:
20
+ purchase_order_date = date_match.group(1)
21
+
22
+ # Stop if both values are found
23
+ if purchase_order_no != "Not Found" and purchase_order_date != "Not Found":
24
+ break
25
+
26
+ # Required columns to keep
27
+ columns_to_keep = ["Purchase Order No", "Date", "SI No", "Material Description",
28
+ "Unit", "Quantity", "Dely Qty", "Dely Date", "Unit Rate", "Value"]
29
+
30
+ # Add Purchase Order No and Date columns to the DataFrame if they are missing
31
+ if "Purchase Order No" not in df.columns:
32
+ df["Purchase Order No"] = purchase_order_no
33
+ if "Date" not in df.columns:
34
+ df["Date"] = purchase_order_date
35
+
36
+ # Filter the DataFrame to only include relevant columns
37
+ df_filtered = df[columns_to_keep]
38
+
39
+ # Save the filtered data to a new Excel file
40
+ output_path = "/tmp/Filtered_Purchase_Order_Data.xlsx"
41
+ df_filtered.to_excel(output_path, index=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
+ return output_path
44
 
45
  # Set up Gradio interface
46
  iface = gr.Interface(
47
  fn=extract_data,
48
+ inputs=gr.File(label="Upload Excel File"),
49
+ outputs=gr.File(label="Download Filtered Excel"),
50
+ title="Excel Data Extractor"
51
  )
52
 
53
  # Launch the app