File size: 1,624 Bytes
a992697
46c3d84
f0ffae0
 
 
 
46c3d84
 
 
f0ffae0
 
 
 
 
 
 
46c3d84
f0ffae0
 
a992697
 
 
 
 
 
67436ec
 
a992697
 
f0ffae0
 
a992697
 
f0ffae0
a992697
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
from transformers import pipeline
import torch

# Initialize Hugging Face pipelines
speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-large")

# Use a valid TTS model for text-to-speech (VITS model from Hugging Face)
text_to_speech = pipeline("text-to-speech", model="espnet/kan-bayashi_ljspeech_vits", device=0)  # Use CPU or GPU (cuda)

# Function to process speech to text and text to speech
def process_audio(input_audio):
    # Convert the audio to text using Whisper model (speech-to-text)
    recognized_text = speech_to_text(input_audio)["text"]
    print(f"Recognized text: {recognized_text}")
    
    # Process the text to speech using the TTS model
    audio_response = text_to_speech(recognized_text)
    return audio_response, recognized_text

# Gradio Interface for the app
def create_gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("## AI Voice Bot for Food Ordering")

        # Audio Input: User speaks into microphone or uploads a file (filepath)
        audio_input = gr.Audio(type="filepath", label="Speak to the bot (Upload or Record Audio)")

        # Display the bot's response after recognition
        output_audio = gr.Audio(label="Bot Response", type="numpy")
        output_text = gr.Textbox(label="Bot Response (Text)")

        # Define the button to process the audio input
        audio_input.change(fn=process_audio, inputs=audio_input, outputs=[output_audio, output_text])

    return demo

# Create and launch the Gradio app
if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch(share=True)