CarstenF's picture
change replicate to deployment instead of model
02cf149
raw
history blame
1.92 kB
import gradio as gr
import replicate
DEPLOYMENT_URI = "dd-ds-ai/lora-test-01-deployment-test"
def generate_image(deployment_uri, lora_scale, guidance_scale, prompt_strength, num_steps, prompt):
deployment = replicate.deployments.get(deployment_uri)
prediction = deployment.predictions.create(
input={
"model": "dev",
"lora_scale": lora_scale,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": guidance_scale,
"output_quality": 90,
"prompt_strength": prompt_strength,
"extra_lora_scale": 1,
"num_inference_steps": num_steps,
"prompt": prompt
}
)
prediction.wait()
image_url = output[0] if output else None
return image_url
# Gradio-Interface erstellen
def create_gradio_interface():
lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale")
guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale")
prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength")
num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps")
prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper")
# Erstelle ein Button-Interface für die Bildgenerierung
generate_btn = gr.Button("Bild generieren")
# Gradio Interface
interface = gr.Interface(
fn=generate_image, # Die Funktion, die aufgerufen wird
inputs=[DEPLOYMENT_URI, lora_scale, guidance_scale, prompt_strength, num_steps, prompt], # Eingaben
outputs=gr.Image(label="Generated Image"), # Ausgabe als Bild
)
# Binde den Button an die Bildgenerierung
interface.launch(share=True)
# Starte die Gradio-App
if __name__ == "__main__":
create_gradio_interface()
# demo.queue().launch()