File size: 2,352 Bytes
fd95831
 
9d99333
a8cbb40
02cf149
a4f85a8
95469d7
a4f85a8
95469d7
a4f85a8
a8cbb40
a4f85a8
 
9d99333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f85a8
9d99333
 
 
 
 
 
 
fd95831
a8cbb40
 
fd95831
 
a4f85a8
 
fd95831
 
 
 
 
a8cbb40
fd95831
a8cbb40
fd95831
a4f85a8
 
 
a8cbb40
 
fd95831
 
 
 
 
 
 
a4f85a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
import replicate
import time


DEPLOYMENT_URIS = {
    "Lora 500": "dd-ds-ai/abendblatt-lora-500",
    "Lora 1000": "dd-ds-ai/lora-test-01-deployment-test",
    "Lora 2000": "dd-ds-ai/abendblatt-lora-2000"
}


def generate_image(model_selection, lora_scale, guidance_scale, prompt_strength, num_steps, prompt):
    # deployment_uri = DEPLOYMENT_URIS[model_selection]
    # deployment = replicate.deployments.get(deployment_uri)
    #
    # prediction = deployment.predictions.create(
    #     input={
    #         "model": "dev",
    #         "lora_scale": lora_scale,
    #         "num_outputs": 1,
    #         "aspect_ratio": "1:1",
    #         "output_format": "webp",
    #         "guidance_scale": guidance_scale,
    #         "output_quality": 90,
    #         "prompt_strength": prompt_strength,
    #         "extra_lora_scale": 1,
    #         "num_inference_steps": num_steps,
    #         "prompt": prompt
    #     }
    # )
    
    # prediction.wait()
    # output = prediction.output
    # image_url = output[0] if output else None

    time.sleep(20)
    image_url = "https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fi1.sndcdn.com%2Fartworks-000207677710-z7mg8u-t500x500.jpg&f=1&nofb=1&ipt=54d62f19e1816c166bec632275277c4118a940853b2cd93d1c673ea487d9dfee&ipo=images"

    return image_url


# Gradio-Interface erstellen
def create_gradio_interface():
    model_selection = gr.Radio(choices=["Lora 500", "Lora 1000", "Lora 2000"], label="Model Selection", value="Lora 1000")
    
    lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale")
    guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale")
    prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength")
    num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps")
    prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper")

    generate_btn = gr.Button("Bild generieren")

    interface = gr.Interface(
        fn=generate_image,  
        inputs=[model_selection, lora_scale, guidance_scale, prompt_strength, num_steps, prompt], 
        outputs=gr.Image(label="Generated Image"),
    )

    interface.launch(share=True)


# Starte die Gradio-App
if __name__ == "__main__":
    create_gradio_interface()