Spaces:
Sleeping
Sleeping
File size: 2,352 Bytes
fd95831 9d99333 a8cbb40 02cf149 a4f85a8 95469d7 a4f85a8 95469d7 a4f85a8 a8cbb40 a4f85a8 9d99333 a4f85a8 9d99333 fd95831 a8cbb40 fd95831 a4f85a8 fd95831 a8cbb40 fd95831 a8cbb40 fd95831 a4f85a8 a8cbb40 fd95831 a4f85a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
import replicate
import time
DEPLOYMENT_URIS = {
"Lora 500": "dd-ds-ai/abendblatt-lora-500",
"Lora 1000": "dd-ds-ai/lora-test-01-deployment-test",
"Lora 2000": "dd-ds-ai/abendblatt-lora-2000"
}
def generate_image(model_selection, lora_scale, guidance_scale, prompt_strength, num_steps, prompt):
# deployment_uri = DEPLOYMENT_URIS[model_selection]
# deployment = replicate.deployments.get(deployment_uri)
#
# prediction = deployment.predictions.create(
# input={
# "model": "dev",
# "lora_scale": lora_scale,
# "num_outputs": 1,
# "aspect_ratio": "1:1",
# "output_format": "webp",
# "guidance_scale": guidance_scale,
# "output_quality": 90,
# "prompt_strength": prompt_strength,
# "extra_lora_scale": 1,
# "num_inference_steps": num_steps,
# "prompt": prompt
# }
# )
# prediction.wait()
# output = prediction.output
# image_url = output[0] if output else None
time.sleep(20)
image_url = "https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fi1.sndcdn.com%2Fartworks-000207677710-z7mg8u-t500x500.jpg&f=1&nofb=1&ipt=54d62f19e1816c166bec632275277c4118a940853b2cd93d1c673ea487d9dfee&ipo=images"
return image_url
# Gradio-Interface erstellen
def create_gradio_interface():
model_selection = gr.Radio(choices=["Lora 500", "Lora 1000", "Lora 2000"], label="Model Selection", value="Lora 1000")
lora_scale = gr.Slider(0, 2, value=1, step=0.1, label="Lora Scale")
guidance_scale = gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale")
prompt_strength = gr.Slider(0, 1, value=0.8, step=0.1, label="Prompt Strength")
num_steps = gr.Slider(1, 50, value=28, step=1, label="Number of Inference Steps")
prompt = gr.Textbox(label="Prompt", value="a person reading the hamburger abendblatt newspaper")
generate_btn = gr.Button("Bild generieren")
interface = gr.Interface(
fn=generate_image,
inputs=[model_selection, lora_scale, guidance_scale, prompt_strength, num_steps, prompt],
outputs=gr.Image(label="Generated Image"),
)
interface.launch(share=True)
# Starte die Gradio-App
if __name__ == "__main__":
create_gradio_interface()
|