Datasculptor's picture
Duplicate from AIGC-Audio/AudioGPT
98f685a
from torch import nn
import copy
import torch
from utils.hparams import hparams
from modules.GenerSpeech.model.wavenet import WN
import math
from modules.fastspeech.tts_modules import LayerNorm
import torch.nn.functional as F
from utils.tts_utils import group_hidden_by_segs, sequence_mask
from scipy.cluster.vq import kmeans2
from torch.nn import functional as F
class VQEmbeddingEMA(nn.Module):
def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5,
print_vq_prob=False):
super(VQEmbeddingEMA, self).__init__()
self.commitment_cost = commitment_cost
self.n_embeddings = n_embeddings
self.decay = decay
self.epsilon = epsilon
self.print_vq_prob = print_vq_prob
self.register_buffer('data_initialized', torch.zeros(1))
init_bound = 1 / 512
embedding = torch.Tensor(n_embeddings, embedding_dim)
embedding.uniform_(-init_bound, init_bound)
self.register_buffer("embedding", embedding)
self.register_buffer("ema_count", torch.zeros(n_embeddings))
self.register_buffer("ema_weight", self.embedding.clone())
def encode(self, x):
B, T, _ = x.shape
M, D = self.embedding.size()
x_flat = x.detach().reshape(-1, D)
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) +
torch.sum(x_flat ** 2, dim=1, keepdim=True),
x_flat, self.embedding.t(),
alpha=-2.0, beta=1.0) # [B*T_mel, N_vq]
indices = torch.argmin(distances.float(), dim=-1) # [B*T_mel]
quantized = F.embedding(indices, self.embedding)
quantized = quantized.view_as(x)
return x_flat, quantized, indices
def forward(self, x):
"""
:param x: [B, T, D]
:return: [B, T, D]
"""
B, T, _ = x.shape
M, D = self.embedding.size()
if self.training and self.data_initialized.item() == 0:
print('| running kmeans in VQVAE') # data driven initialization for the embeddings
x_flat = x.detach().reshape(-1, D)
rp = torch.randperm(x_flat.size(0))
kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points')
self.embedding.copy_(torch.from_numpy(kd[0]))
x_flat, quantized, indices = self.encode(x)
encodings = F.one_hot(indices, M).float()
self.ema_weight.copy_(torch.matmul(encodings.t(), x_flat))
self.ema_count.copy_(torch.sum(encodings, dim=0))
x_flat, quantized, indices = self.encode(x)
encodings = F.one_hot(indices, M).float()
indices = indices.reshape(B, T)
if self.training and self.data_initialized.item() != 0:
self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0)
n = torch.sum(self.ema_count)
self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n
dw = torch.matmul(encodings.t(), x_flat)
self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw
self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1)
self.data_initialized.fill_(1)
e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none')
nonpadding = (x.abs().sum(-1) > 0).float()
e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum()
loss = self.commitment_cost * e_latent_loss
quantized = x + (quantized - x).detach()
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
if self.print_vq_prob:
print("| VQ code avg_probs: ", avg_probs)
return quantized, loss, indices, perplexity
class CrossAttenLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
super(CrossAttenLayer, self).__init__()
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
self.activation = nn.ReLU()
def forward(self, src, local_emotion, emotion_key_padding_mask=None, forcing=False):
# src: (Tph, B, 256) local_emotion: (Temo, B, 256) emotion_key_padding_mask: (B, Temo)
if forcing:
maxlength = src.shape[0]
k = local_emotion.shape[0] / src.shape[0]
lengths1 = torch.ceil(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) + 1
lengths2 = torch.floor(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) - 1
mask1 = sequence_mask(lengths1, local_emotion.shape[0])
mask2 = sequence_mask(lengths2, local_emotion.shape[0])
mask = mask1.float() - mask2.float()
attn_emo = mask.repeat(src.shape[1], 1, 1) # (B, Tph, Temo)
src2 = torch.matmul(local_emotion.permute(1, 2, 0), attn_emo.float().transpose(1, 2)).permute(2, 0, 1)
else:
src2, attn_emo = self.multihead_attn(src, local_emotion, local_emotion, key_padding_mask=emotion_key_padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.activation(self.linear1(src)))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src, attn_emo
class ProsodyAligner(nn.Module):
def __init__(self, num_layers, guided_sigma=0.3, guided_layers=None, norm=None):
super(ProsodyAligner, self).__init__()
self.layers = nn.ModuleList([CrossAttenLayer(d_model=hparams['hidden_size'], nhead=2) for _ in range(num_layers)])
self.num_layers = num_layers
self.norm = norm
self.guided_sigma = guided_sigma
self.guided_layers = guided_layers if guided_layers is not None else num_layers
def forward(self, src, local_emotion, src_key_padding_mask=None, emotion_key_padding_mask=None, forcing=False):
output = src
guided_loss = 0
attn_emo_list = []
for i, mod in enumerate(self.layers):
# output: (Tph, B, 256), global_emotion: (1, B, 256), local_emotion: (Temo, B, 256) mask: None, src_key_padding_mask: (B, Tph),
# emotion_key_padding_mask: (B, Temo)
output, attn_emo = mod(output, local_emotion, emotion_key_padding_mask=emotion_key_padding_mask, forcing=forcing)
attn_emo_list.append(attn_emo.unsqueeze(1))
# attn_emo: (B, Tph, Temo) attn: (B, Tph, Tph)
if i < self.guided_layers and src_key_padding_mask is not None:
s_length = (~src_key_padding_mask).float().sum(-1) # B
emo_length = (~emotion_key_padding_mask).float().sum(-1)
attn_w_emo = _make_guided_attention_mask(src_key_padding_mask.size(-1), s_length, emotion_key_padding_mask.size(-1), emo_length, self.guided_sigma)
g_loss_emo = attn_emo * attn_w_emo # N, L, S
non_padding_mask = (~src_key_padding_mask).unsqueeze(-1) & (~emotion_key_padding_mask).unsqueeze(1)
guided_loss = g_loss_emo[non_padding_mask].mean() + guided_loss
if self.norm is not None:
output = self.norm(output)
return output, guided_loss, attn_emo_list
def _make_guided_attention_mask(ilen, rilen, olen, rolen, sigma):
grid_x, grid_y = torch.meshgrid(torch.arange(ilen, device=rilen.device), torch.arange(olen, device=rolen.device))
grid_x = grid_x.unsqueeze(0).expand(rilen.size(0), -1, -1)
grid_y = grid_y.unsqueeze(0).expand(rolen.size(0), -1, -1)
rilen = rilen.unsqueeze(1).unsqueeze(1)
rolen = rolen.unsqueeze(1).unsqueeze(1)
return 1.0 - torch.exp(
-((grid_y.float() / rolen - grid_x.float() / rilen) ** 2) / (2 * (sigma ** 2))
)
class LocalStyleAdaptor(nn.Module):
def __init__(self, hidden_size, num_vq_codes=64, padding_idx=0):
super(LocalStyleAdaptor, self).__init__()
self.encoder = ConvBlocks(80, hidden_size, [1] * 5, 5, dropout=hparams['vae_dropout'])
self.n_embed = num_vq_codes
self.vqvae = VQEmbeddingEMA(self.n_embed, hidden_size, commitment_cost=hparams['lambda_commit'])
self.wavenet = WN(hidden_channels=80, gin_channels=80, kernel_size=3, dilation_rate=1, n_layers=4)
self.padding_idx = padding_idx
self.hidden_size = hidden_size
def forward(self, ref_mels, mel2ph=None, no_vq=False):
"""
:param ref_mels: [B, T, 80]
:return: [B, 1, H]
"""
padding_mask = ref_mels[:, :, 0].eq(self.padding_idx).data
ref_mels = self.wavenet(ref_mels.transpose(1, 2), x_mask=(~padding_mask).unsqueeze(1).repeat([1, 80, 1])).transpose(1, 2)
if mel2ph is not None:
ref_ph, _ = group_hidden_by_segs(ref_mels, mel2ph, torch.max(mel2ph))
else:
ref_ph = ref_mels
prosody = self.encoder(ref_ph)
if no_vq:
return prosody
z, vq_loss, vq_tokens, ppl = self.vqvae(prosody)
vq_loss = vq_loss.mean()
return z, vq_loss, ppl
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class Conv1d(nn.Conv1d):
"""A wrapper around nn.Conv1d, that works on (batch, time, channels)"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, groups=1, bias=True, padding=0):
super(Conv1d, self).__init__(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, dilation=dilation,
groups=groups, bias=bias, padding=padding)
def forward(self, x):
return super().forward(x.transpose(2, 1)).transpose(2, 1)
def init_weights_func(m):
classname = m.__class__.__name__
if classname.find("Conv1d") != -1:
torch.nn.init.xavier_uniform_(m.weight)
class ResidualBlock(nn.Module):
"""Implements conv->PReLU->norm n-times"""
def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0,
c_multiple=2, ln_eps=1e-12):
super(ResidualBlock, self).__init__()
if norm_type == 'bn':
norm_builder = lambda: nn.BatchNorm1d(channels)
elif norm_type == 'in':
norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True)
elif norm_type == 'gn':
norm_builder = lambda: nn.GroupNorm(8, channels)
elif norm_type == 'ln':
norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps)
else:
norm_builder = lambda: nn.Identity()
self.blocks = [
nn.Sequential(
norm_builder(),
nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation,
padding=(dilation * (kernel_size - 1)) // 2),
LambdaLayer(lambda x: x * kernel_size ** -0.5),
nn.GELU(),
nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation),
)
for i in range(n)
]
self.blocks = nn.ModuleList(self.blocks)
self.dropout = dropout
def forward(self, x):
nonpadding = (x.abs().sum(1) > 0).float()[:, None, :]
for b in self.blocks:
x_ = b(x)
if self.dropout > 0 and self.training:
x_ = F.dropout(x_, self.dropout, training=self.training)
x = x + x_
x = x * nonpadding
return x
class Pad(nn.ZeroPad2d):
def __init__(self, kernel_size, dilation):
pad_total = dilation * (kernel_size - 1)
begin = pad_total // 2
end = pad_total - begin
super(Pad, self).__init__((begin, end, begin, end))
class ZeroTemporalPad(nn.ZeroPad2d):
"""Pad sequences to equal lentgh in the temporal dimension"""
def __init__(self, kernel_size, dilation, causal=False):
total_pad = (dilation * (kernel_size - 1))
if causal:
super(ZeroTemporalPad, self).__init__((total_pad, 0))
else:
begin = total_pad // 2
end = total_pad - begin
super(ZeroTemporalPad, self).__init__((begin, end))
class ConvBlocks(nn.Module):
"""Decodes the expanded phoneme encoding into spectrograms"""
def __init__(self, channels, out_dims, dilations, kernel_size,
norm_type='ln', layers_in_block=2, c_multiple=2,
dropout=0.0, ln_eps=1e-5, init_weights=True):
super(ConvBlocks, self).__init__()
self.res_blocks = nn.Sequential(
*[ResidualBlock(channels, kernel_size, d,
n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple,
dropout=dropout, ln_eps=ln_eps)
for d in dilations],
)
if norm_type == 'bn':
norm = nn.BatchNorm1d(channels)
elif norm_type == 'in':
norm = nn.InstanceNorm1d(channels, affine=True)
elif norm_type == 'gn':
norm = nn.GroupNorm(8, channels)
elif norm_type == 'ln':
norm = LayerNorm(channels, dim=1, eps=ln_eps)
self.last_norm = norm
self.post_net1 = nn.Conv1d(channels, out_dims, kernel_size=3, padding=1)
if init_weights:
self.apply(init_weights_func)
def forward(self, x):
"""
:param x: [B, T, H]
:return: [B, T, H]
"""
x = x.transpose(1, 2)
nonpadding = (x.abs().sum(1) > 0).float()[:, None, :]
x = self.res_blocks(x) * nonpadding
x = self.last_norm(x) * nonpadding
x = self.post_net1(x) * nonpadding
return x.transpose(1, 2)
class TextConvEncoder(ConvBlocks):
def __init__(self, embed_tokens, channels, out_dims, dilations, kernel_size,
norm_type='ln', layers_in_block=2, c_multiple=2,
dropout=0.0, ln_eps=1e-5, init_weights=True):
super().__init__(channels, out_dims, dilations, kernel_size,
norm_type, layers_in_block, c_multiple,
dropout, ln_eps, init_weights)
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(channels)
def forward(self, txt_tokens):
"""
:param txt_tokens: [B, T]
:return: {
'encoder_out': [B x T x C]
}
"""
x = self.embed_scale * self.embed_tokens(txt_tokens)
return super().forward(x)
class ConditionalConvBlocks(ConvBlocks):
def __init__(self, channels, g_channels, out_dims, dilations, kernel_size,
norm_type='ln', layers_in_block=2, c_multiple=2,
dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True):
super().__init__(channels, out_dims, dilations, kernel_size,
norm_type, layers_in_block, c_multiple,
dropout, ln_eps, init_weights)
self.g_prenet = nn.Conv1d(g_channels, channels, 3, padding=1)
self.is_BTC = is_BTC
if init_weights:
self.g_prenet.apply(init_weights_func)
def forward(self, x, g, x_mask):
if self.is_BTC:
x = x.transpose(1, 2)
g = g.transpose(1, 2)
x_mask = x_mask.transpose(1, 2)
x = x + self.g_prenet(g)
x = x * x_mask
if not self.is_BTC:
x = x.transpose(1, 2)
x = super(ConditionalConvBlocks, self).forward(x) # input needs to be BTC
if not self.is_BTC:
x = x.transpose(1, 2)
return x