Spaces:
Build error
Build error
import matplotlib | |
matplotlib.use('Agg') | |
from data_gen.tts.data_gen_utils import get_pitch | |
from modules.fastspeech.tts_modules import mel2ph_to_dur | |
import matplotlib.pyplot as plt | |
from utils import audio | |
from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse | |
from vocoders.base_vocoder import get_vocoder_cls | |
import json | |
from utils.plot import spec_to_figure | |
from utils.hparams import hparams | |
import torch | |
import torch.optim | |
import torch.nn.functional as F | |
import torch.utils.data | |
from modules.GenerSpeech.task.dataset import GenerSpeech_dataset | |
from modules.GenerSpeech.model.generspeech import GenerSpeech | |
import torch.distributions | |
import numpy as np | |
from utils.tts_utils import select_attn | |
import utils | |
import os | |
from tasks.tts.fs2 import FastSpeech2Task | |
class GenerSpeechTask(FastSpeech2Task): | |
def __init__(self): | |
super(GenerSpeechTask, self).__init__() | |
self.dataset_cls = GenerSpeech_dataset | |
def build_tts_model(self): | |
self.model = GenerSpeech(self.phone_encoder) | |
def build_model(self): | |
self.build_tts_model() | |
if hparams['load_ckpt'] != '': | |
self.load_ckpt(hparams['load_ckpt'], strict=False) | |
utils.num_params(self.model) | |
return self.model | |
def run_model(self, model, sample, return_output=False): | |
txt_tokens = sample['txt_tokens'] # [B, T_t] | |
target = sample['mels'] # [B, T_s, 80] | |
mel2ph = sample['mel2ph'] # [B, T_s] | |
mel2word = sample['mel2word'] | |
f0 = sample['f0'] # [B, T_s] | |
uv = sample['uv'] # [B, T_s] 0/1 | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
emo_embed = sample.get('emo_embed') | |
output = model(txt_tokens, mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, | |
ref_mels=target, f0=f0, uv=uv, tgt_mels=target, global_steps=self.global_step, infer=False) | |
losses = {} | |
losses['postflow'] = output['postflow'] | |
if self.global_step > hparams['forcing']: | |
losses['gloss'] = (output['gloss_utter'] + output['gloss_ph'] + output['gloss_word']) / 3 | |
if self.global_step > hparams['vq_start']: | |
losses['vq_loss'] = (output['vq_loss_utter'] + output['vq_loss_ph'] + output['vq_loss_word']) / 3 | |
losses['ppl_utter'] = output['ppl_utter'] | |
losses['ppl_ph'] = output['ppl_ph'] | |
losses['ppl_word'] = output['ppl_word'] | |
self.add_mel_loss(output['mel_out'], target, losses) | |
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) | |
if hparams['use_pitch_embed']: | |
self.add_pitch_loss(output, sample, losses) | |
output['select_attn'] = select_attn(output['attn_ph']) | |
if not return_output: | |
return losses | |
else: | |
return losses, output | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
encdec_attn = model_out['select_attn'] | |
mel_out = self.model.out2mel(model_out['mel_out']) | |
outputs = utils.tensors_to_scalars(outputs) | |
if self.global_step % hparams['valid_infer_interval'] == 0 \ | |
and batch_idx < hparams['num_valid_plots']: | |
vmin = hparams['mel_vmin'] | |
vmax = hparams['mel_vmax'] | |
self.plot_mel(batch_idx, sample['mels'], mel_out) | |
self.plot_dur(batch_idx, sample, model_out) | |
if hparams['use_pitch_embed']: | |
self.plot_pitch(batch_idx, sample, model_out) | |
if self.vocoder is None: | |
self.vocoder = get_vocoder_cls(hparams)() | |
if self.global_step > 0: | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
emo_embed = sample.get('emo_embed') | |
ref_mels = sample['mels'] | |
mel2ph = sample['mel2ph'] # [B, T_s] | |
mel2word = sample['mel2word'] | |
# with gt duration | |
model_out = self.model(sample['txt_tokens'], mel2ph=mel2ph, ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, | |
emo_embed=emo_embed, ref_mels=ref_mels, global_steps=self.global_step, infer=True) | |
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu()) | |
self.logger.add_audio(f'wav_gtdur_{batch_idx}', wav_pred, self.global_step, | |
hparams['audio_sample_rate']) | |
self.logger.add_figure(f'ali_{batch_idx}', spec_to_figure(encdec_attn[0]), self.global_step) | |
self.logger.add_figure( | |
f'mel_gtdur_{batch_idx}', | |
spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step) | |
# with pred duration | |
model_out = self.model(sample['txt_tokens'], ref_mel2ph=mel2ph, ref_mel2word=mel2word, spk_embed=spk_embed, emo_embed=emo_embed, ref_mels=ref_mels, | |
global_steps=self.global_step, infer=True) | |
self.logger.add_figure( | |
f'mel_{batch_idx}', | |
spec_to_figure(model_out['mel_out'][0], vmin, vmax), self.global_step) | |
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu()) | |
self.logger.add_audio(f'wav_{batch_idx}', wav_pred, self.global_step, hparams['audio_sample_rate']) | |
# gt wav | |
if self.global_step <= hparams['valid_infer_interval']: | |
mel_gt = sample['mels'][0].cpu() | |
wav_gt = self.vocoder.spec2wav(mel_gt) | |
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, 22050) | |
return outputs | |
############ | |
# infer | |
############ | |
def test_step(self, sample, batch_idx): | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
emo_embed = sample.get('emo_embed') | |
txt_tokens = sample['txt_tokens'] | |
mel2ph, uv, f0 = None, None, None | |
ref_mel2word = sample['mel2word'] | |
ref_mel2ph = sample['mel2ph'] | |
ref_mels = sample['mels'] | |
if hparams['use_gt_dur']: | |
mel2ph = sample['mel2ph'] | |
if hparams['use_gt_f0']: | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
global_steps = 200000 | |
run_model = lambda: self.model( | |
txt_tokens, spk_embed=spk_embed, emo_embed=emo_embed, mel2ph=mel2ph, ref_mel2ph=ref_mel2ph, ref_mel2word=ref_mel2word, | |
f0=f0, uv=uv, ref_mels=ref_mels, global_steps=global_steps, infer=True) | |
outputs = run_model() | |
sample['outputs'] = self.model.out2mel(outputs['mel_out']) | |
sample['mel2ph_pred'] = outputs['mel2ph'] | |
if hparams['use_pitch_embed']: | |
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) | |
if hparams['pitch_type'] == 'ph': | |
sample['f0'] = torch.gather(F.pad(sample['f0'], [1, 0]), 1, sample['mel2ph']) | |
sample['f0_pred'] = outputs.get('f0_denorm') | |
return self.after_infer(sample) | |
def after_infer(self, predictions, sil_start_frame=0): | |
predictions = utils.unpack_dict_to_list(predictions) | |
assert len(predictions) == 1, 'Only support batch_size=1 in inference.' | |
prediction = predictions[0] | |
prediction = utils.tensors_to_np(prediction) | |
item_name = prediction.get('item_name') | |
text = prediction.get('text') | |
ph_tokens = prediction.get('txt_tokens') | |
mel_gt = prediction["mels"] | |
mel2ph_gt = prediction.get("mel2ph") | |
mel2ph_gt = mel2ph_gt if mel2ph_gt is not None else None | |
mel_pred = prediction["outputs"] | |
mel2ph_pred = prediction.get("mel2ph_pred") | |
f0_gt = prediction.get("f0") | |
f0_pred = prediction.get("f0_pred") | |
str_phs = None | |
if self.phone_encoder is not None and 'txt_tokens' in prediction: | |
str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True) | |
if 'encdec_attn' in prediction: | |
encdec_attn = prediction['encdec_attn'] # (1, Tph, Tmel) | |
encdec_attn = encdec_attn[encdec_attn.max(-1).sum(-1).argmax(-1)] | |
txt_lengths = prediction.get('txt_lengths') | |
encdec_attn = encdec_attn.T[:, :txt_lengths] | |
else: | |
encdec_attn = None | |
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred) | |
wav_pred[:sil_start_frame * hparams['hop_size']] = 0 | |
gen_dir = self.gen_dir | |
base_fn = f'[{self.results_id:06d}][{item_name}][%s]' | |
# if text is not None: | |
# base_fn += text.replace(":", "%3A")[:80] | |
base_fn = base_fn.replace(' ', '_') | |
if not hparams['profile_infer']: | |
os.makedirs(gen_dir, exist_ok=True) | |
os.makedirs(f'{gen_dir}/wavs', exist_ok=True) | |
os.makedirs(f'{gen_dir}/plot', exist_ok=True) | |
if hparams.get('save_mel_npy', False): | |
os.makedirs(f'{gen_dir}/npy', exist_ok=True) | |
if 'encdec_attn' in prediction: | |
os.makedirs(f'{gen_dir}/attn_plot', exist_ok=True) | |
self.saving_results_futures.append( | |
self.saving_result_pool.apply_async(self.save_result, args=[ | |
wav_pred, mel_pred, base_fn % 'TTS', gen_dir, str_phs, mel2ph_pred, encdec_attn])) | |
if mel_gt is not None and hparams['save_gt']: | |
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) | |
self.saving_results_futures.append( | |
self.saving_result_pool.apply_async(self.save_result, args=[ | |
wav_gt, mel_gt, base_fn % 'Ref', gen_dir, str_phs, mel2ph_gt])) | |
if hparams['save_f0']: | |
import matplotlib.pyplot as plt | |
f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams) | |
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams) | |
fig = plt.figure() | |
plt.plot(f0_pred_, label=r'$\hat{f_0}$') | |
plt.plot(f0_gt_, label=r'$f_0$') | |
plt.legend() | |
plt.tight_layout() | |
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png') | |
plt.close(fig) | |
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") | |
self.results_id += 1 | |
return { | |
'item_name': item_name, | |
'text': text, | |
'ph_tokens': self.phone_encoder.decode(ph_tokens.tolist()), | |
'wav_fn_pred': base_fn % 'TTS', | |
'wav_fn_gt': base_fn % 'Ref', | |
} | |
def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None): | |
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'], | |
norm=hparams['out_wav_norm']) | |
fig = plt.figure(figsize=(14, 10)) | |
spec_vmin = hparams['mel_vmin'] | |
spec_vmax = hparams['mel_vmax'] | |
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) | |
fig.colorbar(heatmap) | |
f0, _ = get_pitch(wav_out, mel, hparams) | |
f0 = f0 / 10 * (f0 > 0) | |
plt.plot(f0, c='white', linewidth=1, alpha=0.6) | |
if mel2ph is not None and str_phs is not None: | |
decoded_txt = str_phs.split(" ") | |
dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy() | |
dur = [0] + list(np.cumsum(dur)) | |
for i in range(len(dur) - 1): | |
shift = (i % 20) + 1 | |
plt.text(dur[i], shift, decoded_txt[i]) | |
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black') | |
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black', | |
alpha=1, linewidth=1) | |
plt.tight_layout() | |
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png') | |
plt.close(fig) | |
if hparams.get('save_mel_npy', False): | |
np.save(f'{gen_dir}/npy/{base_fn}', mel) | |
if alignment is not None: | |
fig, ax = plt.subplots(figsize=(12, 16)) | |
im = ax.imshow(alignment, aspect='auto', origin='lower', | |
interpolation='none') | |
ax.set_xticks(np.arange(0, alignment.shape[1], 5)) | |
ax.set_yticks(np.arange(0, alignment.shape[0], 10)) | |
ax.set_ylabel("$S_p$ index") | |
ax.set_xlabel("$H_c$ index") | |
fig.colorbar(im, ax=ax) | |
fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png') | |
plt.close(fig) | |