Spaces:
Sleeping
Sleeping
import torch | |
from torchvision import transforms | |
from torchvision import models | |
from PIL import Image | |
import gradio as gr | |
import os | |
# Use CPU | |
device = torch.device('cpu') | |
# Load the model ResNet-50 model architecture | |
model = models.resnet50(pretrained=False) | |
# Load model's weight to CPU | |
model = torch.load('resnet50_model_weights.pth', map_location=device) | |
model.eval() | |
# Define the image preprocessing | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
# Define the class names | |
class_names = ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier', 'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay', | |
'Boxer', 'British Shorthair', 'Chihuahua', 'Egyptian Mau', 'English Cocker Spaniel', 'English Setter', 'German Shorthaired', | |
'Great Pyrenees', 'Havanese', 'Japanese Chin', 'Keeshond', 'Leonberger', 'Maine Coon', 'Miniature Pinscher', 'Newfoundland', | |
'Persian', 'Pomeranian', 'Pug', 'Ragdoll', 'Russian Blue', 'Saint Bernard', 'Samoyed', 'Scottish Terrier', 'Shiba Inu', | |
'Siamese', 'Sphynx', 'Staffordshire Bull Terrier', 'Wheaten Terrier', 'Yorkshire Terrier'] | |
# Define the predict function | |
def classify_image(image): | |
image = transform(image).unsqueeze(0).to(device) # Ensure image data is processed on CPU | |
with torch.no_grad(): | |
outputs = model(image) | |
_, predicted = torch.max(outputs, 1) | |
return class_names[predicted.item()] | |
# Custom Gradio interface title, description, and article | |
title = 'Oxford Pet ππ' | |
description = 'A ResNet50-based computer vision model for classifying images of pets from the Oxford-IIIT Pet Dataset. The model can recognize 37 different pet breeds, including cats and dogs.' | |
article = 'https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project' | |
# Gradio interface | |
examples = [["examples/" + img] for img in os.listdir('examples')] | |
demo = gr.Interface(fn=classify_image, # Map input to output function | |
inputs=gr.Image(type="pil"), # Image input | |
outputs=[gr.Label(num_top_classes=1, label="Predictions")], # Predicted label | |
examples=examples, # Example images | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo | |
demo.launch() | |