Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,535 Bytes
406922d 2b82929 853de85 c255e80 406922d b4e17e5 406922d 2439595 406922d 922691a 406922d 922691a 406922d 922691a 406922d 853de85 7babadc 4a1799c c255e80 3186b74 406922d 63d6ec9 c255e80 406922d 3186b74 c255e80 3186b74 c617396 c255e80 c617396 3186b74 c255e80 12d9306 9236f5c 30157d2 9236f5c c255e80 c617396 3186b74 30157d2 e416be5 63d6ec9 e416be5 63d6ec9 e416be5 30157d2 63d6ec9 e416be5 63d6ec9 e416be5 63d6ec9 e416be5 30157d2 63d6ec9 30157d2 853de85 30157d2 853de85 30157d2 34f44fd 30157d2 406922d 8ba2b00 406922d 2b04738 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from data_manager import get_dog_description
from urllib.parse import quote
os.system('pip install ultralytics')
from ultralytics import YOLO
# 下載YOLOv5預訓練模型
model_yolo = YOLO('yolov5s.pt') # 使用 YOLOv5 預訓練模型
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# evaluation mode
model.eval()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def get_akc_breeds_link():
return "https://www.akc.org/dog-breeds/"
# def predict(image):
# if image is None:
# return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# try:
# image_tensor = preprocess_image(image)
# with torch.no_grad():
# output = model(image_tensor)
# logits = output[0] if isinstance(output, tuple) else output
# probabilities = F.softmax(logits, dim=1)
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
# top1_prob = topk_probs[0][0].item()
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
# if top1_prob >= 0.5:
# breed = topk_breeds[0]
# description = get_dog_description(breed)
# return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# elif top1_prob < 0.2:
# return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
# gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
# else:
# explanation = (
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
# "Click on a button to view more information about the breed."
# )
# return explanation, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
# except Exception as e:
# return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def predict(image):
if image is None:
return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
try:
# 檢查圖片是否是 numpy.ndarray,如果是則轉換為 PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 使用 YOLO 偵測狗
results = model_yolo(image)
boxes = results[0].boxes # 提取邊界框
if len(boxes) == 0:
return "No dog detected in the image.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
explanations = []
visible_buttons = []
for i, box in enumerate(boxes):
# 提取每隻狗的區域
x1, y1, x2, y2 = map(int, box.xyxy[0]) # 使用 box.xyxy 來提取邊界框座標
# 裁剪出狗區域,確保 image 是 PIL.Image 格式
cropped_image = image.crop((x1, y1, x2, y2))
image_tensor = preprocess_image(cropped_image)
with torch.no_grad():
output = model(image_tensor)
logits = output[0] if isinstance(output, tuple) else output
probabilities = F.softmax(logits, dim=1)
topk_probs, topk_indices = torch.topk(probabilities, k=3)
top1_prob = topk_probs[0][0].item()
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
# 根據信心分數進行判斷
if top1_prob >= 0.5:
breed = topk_breeds[0]
description = get_dog_description(breed)
explanations.append(f"Detected a dog: **{breed}** with {topk_probs_percent[0]} confidence.")
elif 0.2 <= top1_prob < 0.5:
explanation = (
f"Detected a dog with moderate confidence. Here are the top 3 possible breeds:\n"
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n"
)
explanations.append(explanation)
visible_buttons.extend([i+1 for _ in range(3)])
else:
explanations.append("The image is too unclear or the breed is not in the dataset. Please upload a clearer image.")
# 處理不同情境的結果
if len(explanations) > 0:
final_explanation = "\n\n".join(explanations)
return final_explanation, gr.update(visible=len(visible_buttons) >= 1), gr.update(visible=len(visible_buttons) >= 2), gr.update(visible=len(visible_buttons) >= 3)
except Exception as e:
return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def format_description(description, breed):
if isinstance(description, dict):
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
else:
formatted_description = description
akc_link = get_akc_breeds_link()
formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
"You may need to search for the specific breed on that page. "
"I am not responsible for the content on external sites. "
"Please refer to the AKC's terms of use and privacy policy.*")
formatted_description += disclaimer
return formatted_description
def show_details(breed):
breed_name = breed.split("More about ")[-1]
description = get_dog_description(breed_name)
return format_description(description, breed_name)
with gr.Blocks(css="""
.container {
max-width: 900px;
margin: 0 auto;
padding: 20px;
background-color: rgba(255, 255, 255, 0.9);
border-radius: 15px;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
}
.gr-form { display: flex; flex-direction: column; align-items: center; }
.gr-box { width: 100%; max-width: 500px; }
.output-markdown, .output-image {
margin-top: 20px;
padding: 15px;
background-color: #f5f5f5;
border-radius: 10px;
}
.examples {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 10px;
margin-top: 20px;
}
.examples img {
width: 100px;
height: 100px;
object-fit: cover;
}
""") as iface:
gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="numpy")
output = gr.Markdown(label="Prediction Results")
with gr.Row():
btn1 = gr.Button("View More 1", visible=False)
btn2 = gr.Button("View More 2", visible=False)
btn3 = gr.Button("View More 3", visible=False)
input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
btn1.click(show_details, inputs=btn1, outputs=output)
btn2.click(show_details, inputs=btn2, outputs=output)
btn3.click(show_details, inputs=btn3, outputs=output)
gr.Examples(
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
inputs=input_image
)
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')
# launch the program
if __name__ == "__main__":
iface.launch()
|