Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,359 Bytes
8b87358 f3725a9 678ff71 81d7def c9e5868 7bde2e9 c9e5868 3c27777 c9e5868 8b87358 21b74d9 8b87358 979a7b6 8b87358 bbd78ec 8b87358 bbd78ec 8b87358 bbd78ec 8b87358 81d7def 82c1429 866dbcd c9e5868 2255c7b d226f49 ccb675d f3a7e83 ccb675d f3a7e83 bed9a70 ccb675d bed9a70 ccb675d bed9a70 f3a7e83 4647bb5 7bde2e9 4647bb5 ccb675d dd99f2c ccb675d dd99f2c 7bde2e9 ccb675d dd99f2c e43d9f0 45d344c 6e4a127 c9e5868 8b87358 2255c7b 71f3489 ecc483b 16ff08d 94e51dd ccb675d 215a635 ccb675d 71f3489 ccb675d 71f3489 ccb675d c9e5868 ccb675d 16ff08d ccb675d 94e51dd 4be581d 4647bb5 73cee42 a312d58 73cee42 a312d58 73cee42 4f1e4cb 083c145 4f1e4cb 215a635 4fd0690 619efc1 215a635 4fd0690 215a635 73cee42 215a635 aa540fc e43d9f0 215a635 73cee42 20887f3 3fa059c 8b87358 46f61fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont
from data_manager import get_dog_description
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
# 下載YOLOv8預訓練模型
model_yolo = YOLO('yolov8n.pt') # 使用 YOLOv8 預訓練模型
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# evaluation mode
model.eval()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def get_akc_breeds_link():
return "https://www.akc.org/dog-breeds/"
# def predict(image):
# if image is None:
# return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# try:
# image_tensor = preprocess_image(image)
# with torch.no_grad():
# output = model(image_tensor)
# logits = output[0] if isinstance(output, tuple) else output
# probabilities = F.softmax(logits, dim=1)
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
# top1_prob = topk_probs[0][0].item()
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
# if top1_prob >= 0.5:
# breed = topk_breeds[0]
# description = get_dog_description(breed)
# return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# elif top1_prob < 0.2:
# return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
# gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
# else:
# explanation = (
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
# "Click on a button to view more information about the breed."
# )
# return explanation, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
# except Exception as e:
# return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# def format_description(description, breed):
# if isinstance(description, dict):
# formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
# else:
# formatted_description = description
# akc_link = get_akc_breeds_link()
# formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
# disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
# "You may need to search for the specific breed on that page. "
# "I am not responsible for the content on external sites. "
# "Please refer to the AKC's terms of use and privacy policy.*")
# formatted_description += disclaimer
# return formatted_description
# def show_details(breed):
# breed_name = breed.split("More about ")[-1]
# description = get_dog_description(breed_name)
# return format_description(description, breed_name)
# with gr.Blocks(css="""
# .container {
# max-width: 900px;
# margin: 0 auto;
# padding: 20px;
# background-color: rgba(255, 255, 255, 0.9);
# border-radius: 15px;
# box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
# }
# .gr-form { display: flex; flex-direction: column; align-items: center; }
# .gr-box { width: 100%; max-width: 500px; }
# .output-markdown, .output-image {
# margin-top: 20px;
# padding: 15px;
# background-color: #f5f5f5;
# border-radius: 10px;
# }
# .examples {
# display: flex;
# justify-content: center;
# flex-wrap: wrap;
# gap: 10px;
# margin-top: 20px;
# }
# .examples img {
# width: 100px;
# height: 100px;
# object-fit: cover;
# }
# """) as iface:
# gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
# gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
# with gr.Row():
# input_image = gr.Image(label="Upload a dog image", type="numpy")
# output = gr.Markdown(label="Prediction Results")
# with gr.Row():
# btn1 = gr.Button("View More 1", visible=False)
# btn2 = gr.Button("View More 2", visible=False)
# btn3 = gr.Button("View More 3", visible=False)
# input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
# btn1.click(show_details, inputs=btn1, outputs=output)
# btn2.click(show_details, inputs=btn2, outputs=output)
# btn3.click(show_details, inputs=btn3, outputs=output)
# gr.Examples(
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
# inputs=input_image
# )
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')
# # launch the program
# if __name__ == "__main__":
# iface.launch()
def format_description(description, breed):
if isinstance(description, dict):
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
else:
formatted_description = description
formatted_description = f"""
**Breed**: {breed}
{formatted_description}
**Want to learn more about dog breeds?**
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
You may need to search for the specific breed on that page.
I am not responsible for the content on external sites.
Please refer to the AKC's terms of use and privacy policy.*
"""
return formatted_description
async def predict_single_dog(image):
# 直接使用模型進行預測,無需通過 YOLO
return await asyncio.to_thread(_predict_single_dog, image)
def _predict_single_dog(image):
image_tensor = preprocess_image(image)
with torch.no_grad():
output = model(image_tensor)
logits = output[0] if isinstance(output, tuple) else output
probabilities = F.softmax(logits, dim=1)
topk_probs, topk_indices = torch.topk(probabilities, k=3)
top1_prob = topk_probs[0][0].item()
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
return top1_prob, topk_breeds, topk_probs_percent
async def detect_multiple_dogs(image):
return await asyncio.to_thread(_detect_multiple_dogs, image)
def _detect_multiple_dogs(image):
results = model_yolo(image)
dogs = []
for result in results:
for box in result.boxes:
if box.cls == 16: # COCO 資料集中狗的類別是 16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
dogs.append((cropped_image, confidence, xyxy))
return dogs
async def predict(image):
if image is None:
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
dogs = await detect_multiple_dogs(image)
if len(dogs) == 0:
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
if top1_prob < 0.2:
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
breed = topk_breeds[0]
description = get_dog_description(breed)
formatted_description = format_description(description, breed)
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
if len(dogs) == 1:
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
breed = topk_breeds[0]
description = get_dog_description(breed)
formatted_description = format_description(description, breed)
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
explanations = []
visible_buttons = []
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
for i, (cropped_image, _, box) in enumerate(dogs):
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
draw.rectangle(box, outline="red", width=3)
draw.text((box[0], box[1]), f"Dog {i+1}", fill="red")
if top1_prob >= 0.5:
breed = topk_breeds[0]
description = get_dog_description(breed)
explanations.append(f"Dog {i+1}:\n{format_description(description, breed)}")
elif 0.2 <= top1_prob < 0.5:
explanation = f"""
Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
"""
explanations.append(explanation)
visible_buttons.extend([f"More about {topk_breeds[0]}", f"More about {topk_breeds[1]}", f"More about {topk_breeds[2]}"])
else:
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
final_explanation = "\n\n".join(explanations)
return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=len(visible_buttons) >= 2, value=visible_buttons[1] if len(visible_buttons) >= 2 else ""), gr.update(visible=len(visible_buttons) >= 3, value=visible_buttons[2] if len(visible_buttons) >= 3 else "")
except Exception as e:
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
async def show_details(choice):
if not choice:
return "Please select a breed to view details."
try:
if "Dog" in choice:
_, breed = choice.split(": ", 1)
else:
_, breed = choice.split("More about ", 1)
description = get_dog_description(breed)
return format_description(description, breed)
except Exception as e:
return f"An error occurred while showing details: {e}"
with gr.Blocks(css="""
.container { max-width: 900px; margin: auto; padding: 20px; }
.gr-box { border-radius: 15px; }
.output-markdown { margin-top: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 10px; }
.examples { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-top: 20px; }
.examples img { width: 100px; height: 100px; object-fit: cover; }
""") as iface:
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="pil")
output_image = gr.Image(label="Annotated Image")
output = gr.Markdown(label="Prediction Results")
breed_buttons = gr.Radio([], label="Select breed for more details", visible=False)
breed_details = gr.Markdown(label="Breed Details")
async def safe_predict(image):
try:
return await predict(image)
except Exception as e:
return str(e), None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
input_image.change(
safe_predict,
inputs=input_image,
outputs=[output, output_image, breed_buttons, breed_details]
)
breed_buttons.select(
show_details,
inputs=breed_buttons,
outputs=breed_details
)
gr.Examples(
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
inputs=input_image
)
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
if __name__ == "__main__":
iface.launch()
|