Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,697 Bytes
406922d 2b82929 853de85 406922d 2439595 406922d 853de85 406922d ad1101d 406922d 853de85 406922d 853de85 e7f72f3 853de85 406922d 853de85 e7f72f3 853de85 406922d 853de85 406922d 853de85 2439595 853de85 34f44fd 406922d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from data_manager import get_dog_description
from urllib.parse import quote
dog_breeds = ["Afghan_Hound(阿富汗獵犬)", "African_Hunting_Dog(非洲野犬)", "Airedale(艾爾谷犬)",
"American_Staffordshire_Terrier(美國斯塔福郡梗)", "Appenzeller(亞賓澤爾犬)",
"Australian_Terrier(澳大利亞梗)", "Bedlington_Terrier(貝德靈頓梗)",
"Bernese_Mountain_Dog(伯恩山犬)", "Blenheim_Spaniel(布萊尼姆獵犬)",
"Border_Collie(邊境牧羊犬)", "Border_Terrier(邊境梗)", "Boston_Bull(波士頓梗)",
"Bouvier_Des_Flandres(法蘭德斯牧羊犬)", "Brabancon_Griffon(布魯塞爾格里芬犬)",
"Brittany_Spaniel(布列塔尼獵犬)", "Cardigan(卡迪根威爾士柯基犬)",
"Chesapeake_Bay_Retriever(切薩皮克灣獵犬)", "Chihuahua(吉娃娃)",
"Dandie_Dinmont(丹第丁蒙梗)", "Doberman(杜賓犬)", "English_Foxhound(英國獵狐犬)",
"English_Setter(英國雪達犬)", "English_Springer(英國跳獵犬)",
"EntleBucher(恩特雷布赫山地犬)", "Eskimo_Dog(愛斯基摩犬)", "French_Bulldog(法國鬥牛犬)",
"German_Shepherd(德國牧羊犬)", "German_Short-Haired_Pointer(德國短毛指示犬)",
"Gordon_Setter(戈登雪達犬)", "Great_Dane(大丹犬)", "Great_Pyrenees(大白熊犬)",
"Greater_Swiss_Mountain_Dog(大瑞士山地犬)", "Ibizan_Hound(依比沙獵犬)",
"Irish_Setter(愛爾蘭雪達犬)", "Irish_Terrier(愛爾蘭梗)",
"Irish_Water_Spaniel(愛爾蘭水獵犬)", "Irish_Wolfhound(愛爾蘭獵狼犬)",
"Italian_Greyhound(義大利灰狗)", "Japanese_Spaniel(日本狆)",
"Kerry_Blue_Terrier(凱利藍梗)", "Labrador_Retriever(拉布拉多尋回犬)",
"Lakeland_Terrier(湖畔梗)", "Leonberg(獅毛狗)", "Lhasa(拉薩犬)",
"Maltese_Dog(馬爾濟斯犬)", "Mexican_Hairless(墨西哥無毛犬)", "Newfoundland(紐芬蘭犬)",
"Norfolk_Terrier(諾福克梗)", "Norwegian_Elkhound(挪威獵麋犬)",
"Norwich_Terrier(諾利治梗)", "Old_English_Sheepdog(古代英國牧羊犬)",
"Pekinese(北京犬)", "Pembroke(威爾士柯基犬)", "Pomeranian(博美犬)",
"Rhodesian_Ridgeback(羅得西亞脊背犬)", "Rottweiler(羅威納犬)",
"Saint_Bernard(聖伯納犬)", "Saluki(薩路基獵犬)", "Samoyed(薩摩耶犬)",
"Scotch_Terrier(蘇格蘭梗)", "Scottish_Deerhound(蘇格蘭獵鹿犬)",
"Sealyham_Terrier(錫利哈姆梗)", "Shetland_Sheepdog(設得蘭牧羊犬)",
"Shih-Tzu(西施犬)", "Siberian_Husky(西伯利亞哈士奇)",
"Staffordshire_Bullterrier(斯塔福郡鬥牛梗)", "Sussex_Spaniel(蘇塞克斯獵犬)",
"Tibetan_Mastiff(藏獒)", "Tibetan_Terrier(西藏梗)", "Walker_Hound(沃克獵犬)",
"Weimaraner(威瑪犬)", "Welsh_Springer_Spaniel(威爾士跳獵犬)",
"West_Highland_White_Terrier(西高地白梗)", "Yorkshire_Terrier(約克夏梗)",
"Affenpinscher(猴犬)", "Basenji(巴辛吉犬)", "Basset(巴吉度獵犬)", "Beagle(比格犬)",
"Black-and-Tan_Coonhound(黑褐獵浣熊犬)", "Bloodhound(尋血獵犬)",
"Bluetick(布魯提克獵犬)", "Borzoi(俄羅斯獵狼犬)", "Boxer(拳師犬)", "Briard(布里亞犬)",
"Bull_Mastiff(獒犬)", "Cairn(凱恩梗)", "Chow(鬆獅犬)", "Clumber(克倫伯獵犬)",
"Cocker_Spaniel(可卡獵犬)", "Collie(柯利牧羊犬)", "Curly-Coated_Retriever(捲毛尋回犬)",
"Dhole(豺)", "Dingo(澳洲野犬)", "Flat-Coated_Retriever(平毛尋回犬)",
"Giant_Schnauzer(大型雪納瑞犬)", "Golden_Retriever(黃金獵犬)",
"Groenendael(比利時牧羊犬)", "Keeshond(荷蘭毛獅犬)", "Kelpie(澳洲卡爾比犬)",
"Komondor(匈牙利牧羊犬)", "Kuvasz(庫瓦茲犬)", "Malamute(阿拉斯加雪橇犬)",
"Malinois(比利時瑪利諾犬)", "Miniature_Pinscher(迷你杜賓犬)",
"Miniature_Poodle(迷你貴賓犬)", "Miniature_Schnauzer(迷你雪納瑞犬)",
"Otterhound(水獺獵犬)", "Papillon(蝴蝶犬)", "Pug(巴哥犬)", "Redbone(紅骨獵浣熊犬)",
"Schipperke(舒柏奇犬)", "Silky_Terrier(絲毛梗)",
"Soft-Coated_Wheaten_Terrier(愛爾蘭軟毛梗)", "Standard_Poodle(標準貴賓犬)",
"Standard_Schnauzer(標準雪納瑞犬)", "Toy_Poodle(玩具貴賓犬)", "Toy_Terrier(玩具梗)",
"Vizsla(維茲拉犬)", "Whippet(惠比特犬)", "Wire-Haired_Fox_Terrier(硬毛獵狐梗)"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
# 動態計算 num_heads
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# 將模型設置為評估模式
model.eval()
# Image preprocessing function
def preprocess_image(image):
# 如果圖片是 numpy.ndarray 轉換為 PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 使用 torchvision.transforms 進行預處理
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
# def predict(image):
# try:
# image_tensor = preprocess_image(image)
# with torch.no_grad():
# logits, _ = model(image_tensor)
# _, predicted = torch.max(logits, 1)
# breed = dog_breeds[predicted.item()] # Map label to breed name
# # Retrieve breed description
# description = get_dog_description(breed)
# # Formatting the description for better display
# if isinstance(description, dict):
# description_str = f"**Breed**: {description['Breed']}\n\n"
# description_str += f"**Size**: {description['Size']}\n\n"
# description_str += f"**Lifespan**: {description['Lifespan']}\n\n"
# description_str += f"**Temperament**: {description['Temperament']}\n\n"
# description_str += f"**Care Level**: {description['Care Level']}\n\n"
# description_str += f"**Good with Children**: {description['Good with Children']}\n\n"
# description_str += f"**Exercise Needs**: {description['Exercise Needs']}\n\n"
# description_str += f"**Grooming Needs**: {description['Grooming Needs']}\n\n"
# description_str += f"**Description**: {description['Description']}\n\n"
# else:
# description_str = description
# return description_str
# except Exception as e:
# return f"An error occurred: {e}"
def predict(image):
try:
image_tensor = preprocess_image(image)
with torch.no_grad():
output = model(image_tensor)
if isinstance(output, tuple):
logits = output[0]
else:
logits = output
_, predicted = torch.max(logits, 1)
breed = dog_breeds[predicted.item()] # Map label to breed name
# Retrieve breed description
description = get_dog_description(breed)
# Generate Wikipedia link
wiki_link = f"https://en.wikipedia.org/wiki/Special:Search?search={quote(breed)}+dog"
# Formatting the description for better display
if isinstance(description, dict):
description_str = f"**Breed**: {description['Breed']}\n\n"
description_str += f"**Size**: {description['Size']}\n\n"
description_str += f"**Lifespan**: {description['Lifespan']}\n\n"
description_str += f"**Temperament**: {description['Temperament']}\n\n"
description_str += f"**Care Level**: {description['Care Level']}\n\n"
description_str += f"**Good with Children**: {description['Good with Children']}\n\n"
description_str += f"**Exercise Needs**: {description['Exercise Needs']}\n\n"
description_str += f"**Grooming Needs**: {description['Grooming Needs']}\n\n"
description_str += f"**Description**: {description['Description']}\n\n"
else:
description_str = description
# Add Wikipedia link
description_str += f"\n\n[Click here to search for {breed} on Wikipedia]({wiki_link})"
return description_str
except Exception as e:
return f"An error occurred: {e}"
iface = gr.Interface(
fn=predict,
inputs=gr.Image(label="Upload a dog image", type="numpy"),
outputs=gr.Markdown(label="Prediction Results"),
title="<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>",
description="<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and AI will predict its breed, provide detailed information, and include a Wikipedia link!</p>",
examples=['Border_Collie.jpg',
'Golden_Retriever.jpeg',
'Saint_Bernard.jpeg',
'French_Bulldog.jpeg',
'Samoyed.jpg'],
css = """
/* 新增樣式 */
.container {
max-width: 900px;
margin: 0 auto;
padding: 20px;
background-color: rgba(255, 255, 255, 0.9);
border-radius: 15px;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
}
.gr-form {
display: flex;
flex-direction: column;
align-items: center;
}
.gr-box {
width: 100%;
max-width: 500px;
}
.output-markdown, .output-image {
margin-top: 20px;
padding: 15px;
background-color: #f5f5f5;
border-radius: 10px;
}
.examples {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 10px;
margin-top: 20px;
}
.examples img {
width: 100px;
height: 100px;
object-fit: cover;
}
""",
theme='default')
# Launch the app
if __name__ == "__main__":
iface.launch()
|