DawnC commited on
Commit
9f1fb93
·
verified ·
1 Parent(s): 31492de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -300,7 +300,7 @@ def _predict_single_dog(image):
300
  # dogs.append((cropped_image, confidence, xyxy))
301
  # return dogs
302
 
303
- async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
304
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
305
  dogs = []
306
  for box in results.boxes:
@@ -432,10 +432,10 @@ async def predict(image):
432
  if isinstance(image, np.ndarray):
433
  image = Image.fromarray(image)
434
 
435
- # 嘗試檢測多隻狗,使用較高的閾值以避免錯誤檢測
436
- dogs = await detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5)
437
 
438
- # 如果只檢測到一隻狗,使用單狗處理邏輯
439
  if len(dogs) <= 1:
440
  return await process_single_dog(image)
441
 
@@ -473,9 +473,9 @@ async def predict(image):
473
  buttons[0] if len(buttons) > 0 else gr.update(visible=False),
474
  buttons[1] if len(buttons) > 1 else gr.update(visible=False),
475
  buttons[2] if len(buttons) > 2 else gr.update(visible=False),
476
- gr.update(visible=True))
477
  else:
478
- return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
479
 
480
  except Exception as e:
481
  return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
@@ -490,7 +490,7 @@ async def process_single_dog(image):
490
 
491
  if top1_prob >= 0.5:
492
  formatted_description = format_description(description, breed)
493
- return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
494
  else:
495
  explanation = (
496
  f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
@@ -534,10 +534,12 @@ with gr.Blocks() as iface:
534
 
535
  back_button = gr.Button("Back", visible=False)
536
 
 
 
537
  input_image.change(
538
  predict,
539
  inputs=input_image,
540
- outputs=[output, output_image, btn1, btn2, btn3, back_button]
541
  )
542
 
543
  for btn in [btn1, btn2, btn3]:
@@ -548,8 +550,9 @@ with gr.Blocks() as iface:
548
  )
549
 
550
  back_button.click(
551
- lambda: (gr.update(value=""), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)),
552
- outputs=[output, btn1, btn2, btn3, back_button]
 
553
  )
554
 
555
  gr.Examples(
@@ -559,5 +562,6 @@ with gr.Blocks() as iface:
559
 
560
  gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
561
 
 
562
  if __name__ == "__main__":
563
  iface.launch()
 
300
  # dogs.append((cropped_image, confidence, xyxy))
301
  # return dogs
302
 
303
+ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5):
304
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
305
  dogs = []
306
  for box in results.boxes:
 
432
  if isinstance(image, np.ndarray):
433
  image = Image.fromarray(image)
434
 
435
+ # 嘗試檢測多隻狗,使用較低的閾值以提高檢測率
436
+ dogs = await detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5)
437
 
438
+ # 如果只檢測到一隻或沒有檢測到狗,使用單狗處理邏輯
439
  if len(dogs) <= 1:
440
  return await process_single_dog(image)
441
 
 
473
  buttons[0] if len(buttons) > 0 else gr.update(visible=False),
474
  buttons[1] if len(buttons) > 1 else gr.update(visible=False),
475
  buttons[2] if len(buttons) > 2 else gr.update(visible=False),
476
+ gr.update(visible=False))
477
  else:
478
+ return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
479
 
480
  except Exception as e:
481
  return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
 
490
 
491
  if top1_prob >= 0.5:
492
  formatted_description = format_description(description, breed)
493
+ return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
494
  else:
495
  explanation = (
496
  f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
 
534
 
535
  back_button = gr.Button("Back", visible=False)
536
 
537
+ initial_output = gr.State()
538
+
539
  input_image.change(
540
  predict,
541
  inputs=input_image,
542
+ outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_output]
543
  )
544
 
545
  for btn in [btn1, btn2, btn3]:
 
550
  )
551
 
552
  back_button.click(
553
+ lambda initial: (initial, gr.update(visible=False)),
554
+ inputs=[initial_output],
555
+ outputs=[output, back_button]
556
  )
557
 
558
  gr.Examples(
 
562
 
563
  gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
564
 
565
+
566
  if __name__ == "__main__":
567
  iface.launch()