DawnC commited on
Commit
f182a56
·
1 Parent(s): 0b712eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -4
app.py CHANGED
@@ -143,6 +143,67 @@ def preprocess_image(image):
143
  def get_akc_breeds_link():
144
  return "https://www.akc.org/dog-breeds/"
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  def predict(image):
147
  try:
148
  image_tensor = preprocess_image(image)
@@ -160,8 +221,16 @@ def predict(image):
160
  # 檢查最高的預測機率
161
  top1_prob = topk_probs[0][0].item()
162
 
 
 
 
 
 
 
 
 
 
163
  if top1_prob >= 0.5:
164
- # 正確辨識時,返回該品種資訊
165
  predicted = topk_indices[0][0]
166
  breed = dog_breeds[predicted.item()]
167
  description = get_dog_description(breed)
@@ -185,12 +254,15 @@ def predict(image):
185
  return description_str
186
 
187
  else:
188
- # 不確定時,返回top 3的預測結果
189
  topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
190
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
191
 
192
- # 用粗體返回品種和機率
193
- topk_results = "\n\n".join([f"**{i+1}. {breed}** ({prob} confidence)" for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))])
 
 
 
194
 
195
  # 提���說明
196
  explanation = (
 
143
  def get_akc_breeds_link():
144
  return "https://www.akc.org/dog-breeds/"
145
 
146
+ # def predict(image):
147
+ # try:
148
+ # image_tensor = preprocess_image(image)
149
+ # with torch.no_grad():
150
+ # output = model(image_tensor)
151
+ # if isinstance(output, tuple):
152
+ # logits = output[0]
153
+ # else:
154
+ # logits = output
155
+
156
+ # # 取得預測的top k結果
157
+ # probabilities = F.softmax(logits, dim=1)
158
+ # topk_probs, topk_indices = torch.topk(probabilities, k=3)
159
+
160
+ # # 檢查最高的預測機率
161
+ # top1_prob = topk_probs[0][0].item()
162
+
163
+ # if top1_prob >= 0.5:
164
+ # # 正確辨識時,返回該品種資訊
165
+ # predicted = topk_indices[0][0]
166
+ # breed = dog_breeds[predicted.item()]
167
+ # description = get_dog_description(breed)
168
+ # akc_link = get_akc_breeds_link()
169
+
170
+ # if isinstance(description, dict):
171
+ # description_str = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
172
+ # else:
173
+ # description_str = description
174
+
175
+ # # 添加AKC連結
176
+ # description_str += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
177
+
178
+ # # 添加免責聲明
179
+ # disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
180
+ # "You may need to search for the specific breed on that page. "
181
+ # "I am not responsible for the content on external sites. "
182
+ # "Please refer to the AKC's terms of use and privacy policy.*")
183
+ # description_str += disclaimer
184
+
185
+ # return description_str
186
+
187
+ # else:
188
+ # # 不確定時,返回top 3的預測結果
189
+ # topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
190
+ # topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
191
+
192
+ # # 用粗體返回品種和機率
193
+ # topk_results = "\n\n".join([f"**{i+1}. {breed}** ({prob} confidence)" for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))])
194
+
195
+ # # 提供說明
196
+ # explanation = (
197
+ # f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n{topk_results}\n\n"
198
+ # "This can happen if the image quality is low or the breed is rare in the dataset. "
199
+ # "Please try uploading a clearer image or a different angle of the dog. "
200
+ # "For more accurate results, ensure the dog is the main subject of the photo."
201
+ # )
202
+
203
+ # return explanation
204
+ # except Exception as e:
205
+ # return f"An error occurred: {e}"
206
+
207
  def predict(image):
208
  try:
209
  image_tensor = preprocess_image(image)
 
221
  # 檢查最高的預測機率
222
  top1_prob = topk_probs[0][0].item()
223
 
224
+ # 假設低於 20% 機率為非狗或不確定的圖片
225
+ if top1_prob < 0.2:
226
+ return (
227
+ "The model couldn't confidently identify a dog breed. "
228
+ "It seems like the image may not contain a dog, or the image quality is too low. "
229
+ "Please upload a clearer picture or ensure the subject is a dog."
230
+ )
231
+
232
+ # 當信心高於 50% 時,直接返回該品種資訊
233
  if top1_prob >= 0.5:
 
234
  predicted = topk_indices[0][0]
235
  breed = dog_breeds[predicted.item()]
236
  description = get_dog_description(breed)
 
254
  return description_str
255
 
256
  else:
257
+ # 信心不足50%,返回top 3的預測結果並附加連結
258
  topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
259
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
260
 
261
+ # 構建每個品種的連結和預測機率
262
+ topk_results = "\n\n".join(
263
+ [f"**{i+1}. [{breed}](https://www.akc.org/dog-breeds/{quote(breed)})** ({prob} confidence)"
264
+ for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))]
265
+ )
266
 
267
  # 提���說明
268
  explanation = (