DeF0017's picture
Upload app.py
b49897a verified
raw
history blame
5.95 kB
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import subprocess
import numpy as np
import os
from threading import Thread
import uuid
import io
import re # Import regular expressions for word highlighting
# Model and Processor Loading (Done once at startup)
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
model = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
# Define supported media extensions
image_extensions = Image.registered_extensions()
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
def identify_and_save_blob(blob_path):
"""Identifies if the blob is an image or video and saves it accordingly."""
try:
with open(blob_path, 'rb') as file:
blob_content = file.read()
# Try to identify if it's an image
try:
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
extension = ".png" # Default to PNG for saving
media_type = "image"
except (IOError, SyntaxError):
# If it's not a valid image, assume it's a video
extension = ".mp4" # Default to MP4 for saving
media_type = "video"
# Create a unique filename
filename = f"temp_{uuid.uuid4()}_media{extension}"
with open(filename, "wb") as f:
f.write(blob_content)
return filename, media_type
except FileNotFoundError:
raise ValueError(f"The file {blob_path} was not found.")
except Exception as e:
raise ValueError(f"An error occurred while processing the file: {e}")
@spaces.GPU
def qwen_inference(media_input, search_word):
"""
Performs OCR on the input media and highlights the search_word in the extracted text.
Args:
media_input (str): Path to the uploaded image or video file.
search_word (str): The word to search and highlight in the OCR result.
Yields:
str: The OCR result with highlighted search words.
"""
text_input = "Extract text" # Hardcoded text query
if isinstance(media_input, str): # If it's a filepath
media_path = media_input
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
media_type = "image"
elif media_path.endswith(video_extensions):
media_type = "video"
else:
try:
media_path, media_type = identify_and_save_blob(media_input)
print(media_path, media_type)
except Exception as e:
print(e)
raise ValueError(
"Unsupported media type. Please upload an image or video."
)
print(f"Processing media: {media_path} (Type: {media_type})")
messages = [
{
"role": "user",
"content": [
{
"type": media_type,
media_type: media_path,
**({"fps": 8.0} if media_type == "video" else {}),
},
{"type": "text", "text": text_input},
],
}
]
# Apply chat template to format the input for the model
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
# Prepare model inputs
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
# Initialize the streamer for iterative generation
streamer = TextIteratorStreamer(
processor, skip_prompt=True, **{"skip_special_tokens": True}
)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
# Start the generation in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# Highlight the search_word in the buffer
if search_word:
# Use regex for case-insensitive search and highlight
pattern = re.compile(re.escape(search_word), re.IGNORECASE)
highlighted_text = pattern.sub(lambda m: f"<mark>{m.group(0)}</mark>", buffer)
else:
highlighted_text = buffer
yield highlighted_text
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Image/Video Input"):
with gr.Row():
with gr.Column():
input_media = gr.File(
label="Upload Image or Video", type="filepath"
)
search_word = gr.Textbox(
label="Search Word", placeholder="Enter word to highlight", lines=1
)
submit_btn = gr.Button(value="Submit")
with gr.Column():
# Use HTML component to display highlighted text
output_text = gr.HTML(label="Output Text")
submit_btn.click(
qwen_inference,
inputs=[input_media, search_word],
outputs=[output_text]
)
demo.launch(debug=True)