Spaces:
Running
Running
import gradio as gr | |
import spaces | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
from qwen_vl_utils import process_vision_info | |
import torch | |
from PIL import Image | |
import subprocess | |
import numpy as np | |
import os | |
from threading import Thread | |
import uuid | |
import io | |
import re # Import regular expressions for word highlighting | |
# Model and Processor Loading (Done once at startup) | |
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct" | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)" | |
# Define supported media extensions | |
image_extensions = Image.registered_extensions() | |
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp") | |
def identify_and_save_blob(blob_path): | |
"""Identifies if the blob is an image or video and saves it accordingly.""" | |
try: | |
with open(blob_path, 'rb') as file: | |
blob_content = file.read() | |
# Try to identify if it's an image | |
try: | |
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image | |
extension = ".png" # Default to PNG for saving | |
media_type = "image" | |
except (IOError, SyntaxError): | |
# If it's not a valid image, assume it's a video | |
extension = ".mp4" # Default to MP4 for saving | |
media_type = "video" | |
# Create a unique filename | |
filename = f"temp_{uuid.uuid4()}_media{extension}" | |
with open(filename, "wb") as f: | |
f.write(blob_content) | |
return filename, media_type | |
except FileNotFoundError: | |
raise ValueError(f"The file {blob_path} was not found.") | |
except Exception as e: | |
raise ValueError(f"An error occurred while processing the file: {e}") | |
def qwen_inference(media_input, search_word): | |
""" | |
Performs OCR on the input media and highlights the search_word in the extracted text. | |
Args: | |
media_input (str): Path to the uploaded image or video file. | |
search_word (str): The word to search and highlight in the OCR result. | |
Yields: | |
str: The OCR result with highlighted search words. | |
""" | |
text_input = "Extract text" # Hardcoded text query | |
if isinstance(media_input, str): # If it's a filepath | |
media_path = media_input | |
if media_path.endswith(tuple([i for i, f in image_extensions.items()])): | |
media_type = "image" | |
elif media_path.endswith(video_extensions): | |
media_type = "video" | |
else: | |
try: | |
media_path, media_type = identify_and_save_blob(media_input) | |
print(media_path, media_type) | |
except Exception as e: | |
print(e) | |
raise ValueError( | |
"Unsupported media type. Please upload an image or video." | |
) | |
print(f"Processing media: {media_path} (Type: {media_type})") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": media_type, | |
media_type: media_path, | |
**({"fps": 8.0} if media_type == "video" else {}), | |
}, | |
{"type": "text", "text": text_input}, | |
], | |
} | |
] | |
# Apply chat template to format the input for the model | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
# Prepare model inputs | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to("cuda") | |
# Initialize the streamer for iterative generation | |
streamer = TextIteratorStreamer( | |
processor, skip_prompt=True, **{"skip_special_tokens": True} | |
) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
# Start the generation in a separate thread | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
# Highlight the search_word in the buffer | |
if search_word: | |
# Use regex for case-insensitive search and highlight | |
pattern = re.compile(re.escape(search_word), re.IGNORECASE) | |
highlighted_text = pattern.sub(lambda m: f"<mark>{m.group(0)}</mark>", buffer) | |
else: | |
highlighted_text = buffer | |
yield highlighted_text | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="Image/Video Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_media = gr.File( | |
label="Upload Image or Video", type="filepath" | |
) | |
search_word = gr.Textbox( | |
label="Search Word", placeholder="Enter word to highlight", lines=1 | |
) | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
# Use HTML component to display highlighted text | |
output_text = gr.HTML(label="Output Text") | |
submit_btn.click( | |
qwen_inference, | |
inputs=[input_media, search_word], | |
outputs=[output_text] | |
) | |
demo.launch(debug=True) |