Spaces:
Running
Running
File size: 7,656 Bytes
0cfb4a5 d4fba6d 0dec378 de6051a 0dec378 2fc432b 7440665 2fc432b 7440665 1a52ee5 4ec4b86 7440665 e3be785 7440665 bc9a69a 7440665 bc9a69a e3be785 7440665 2fc432b 6bd865c bc9a69a 7440665 6bd865c 7440665 6bd865c 7440665 6bd865c 1a52ee5 7440665 61bff42 6bd865c 7440665 6bd865c 7440665 6bd865c 7440665 6bd865c 7440665 bc9a69a 7440665 0a48097 7440665 0a48097 7440665 0a48097 7440665 0a48097 7440665 6bd865c 7440665 581837a 7440665 7809429 7440665 6bd865c 7440665 6bd865c 7440665 6bd865c e3be785 7440665 6bd865c 7440665 6bd865c 7440665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
from gradio_client import Client, handle_file
from PIL import Image
from huggingface_hub import login
from themes import IndonesiaTheme # Import custom IndonesiaTheme
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = "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"
HF_TOKEN_UPSCALER = "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"
# Function to enable LoRA if selected
def enable_lora(lora_add, basemodel):
print(f"[-] Menentukan model: LoRA {'diaktifkan' if lora_add else 'tidak diaktifkan'}, model dasar: {basemodel}")
return basemodel if not lora_add else lora_add
# Function to generate image
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
print(f"[-] Menerjemahkan prompt: {prompt}")
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
print(f"[-] Generating image with prompt: {text}, model: {model}")
client = AsyncInferenceClient()
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
print(f"[-] Error generating image: {e}")
return None, None
# Function to upscale image
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}")
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(
input_image=handle_file(img_path),
prompt=prompt,
negative_prompt="worst quality, low quality, normal quality",
upscale_factor=upscale_factor,
controlnet_scale=0.6,
controlnet_decay=1,
condition_scale=6,
denoise_strength=0.35,
num_inference_steps=18,
solver="DDIM",
api_name="/process"
)
print(f"[-] Proses upscaling berhasil.")
return result[1] # Return upscale image path
except Exception as e:
print(f"[-] Error scaling image: {e}")
return None
# Main function to generate images and optionally upscale
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
print(f"[-] Memulai generasi gambar dengan prompt: {prompt}")
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
print(f"[-] Menggunakan model: {model}")
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None:
print("[-] Image generation failed.")
return []
image_path = "temp_image.jpg"
print(f"[-] Menyimpan gambar sementara di: {image_path}")
image.save(image_path, format="JPEG")
upscale_image_path = None
if process_upscale:
print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}")
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
if upscale_image_path is not None and os.path.exists(upscale_image_path):
print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}")
return [image_path, upscale_image_path] # Return both images
else:
print("[-] Upscaling gagal, jalur gambar upscale tidak ditemukan.")
return [image_path]
# CSS for styling the interface
css = """
#col-left, #col-mid, #col-right {
margin: 0 auto;
max-width: 400px;
padding: 10px;
border-radius: 15px;
background-color: #f9f9f9;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
#banner {
width: 100%;
text-align: center;
margin-bottom: 20px;
}
#run-button {
background-color: #ff4b5c;
color: white;
font-weight: bold;
padding: 10px;
border-radius: 10px;
cursor: pointer;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
#footer {
text-align: center;
margin-top: 20px;
color: silver;
}
"""
# Creating Gradio interface
with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker:
# Displaying the application title
gr.HTML('<div id="banner">✨ Flux MultiMode Generator + Upscaler ✨</div>')
with gr.Column(elem_id="col-container"):
# Output section (replacing ImageSlider with gr.Gallery)
with gr.Row():
output_res = gr.Gallery(label="⚡ Flux / Upscaled Image ⚡", elem_id="output-res", columns=2, height="auto")
# User input section split into two columns
with gr.Row():
# Column 1: Input prompt, LoRA, and base model
with gr.Column(scale=1, elem_id="col-left"):
prompt = gr.Textbox(
label="📜 Deskripsi Gambar",
placeholder="Tuliskan prompt Anda dalam bahasa apapun, yang akan langsung diterjemahkan ke bahasa Inggris.",
elem_id="textbox-prompt"
)
basemodel_choice = gr.Dropdown(
label="🖼️ Pilih Model",
choices=[
"black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-DEV",
"enhanceaiteam/Flux-uncensored",
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"city96/FLUX.1-dev-gguf"
],
value="black-forest-labs/FLUX.1-schnell"
)
lora_model_choice = gr.Dropdown(
label="🎨 Pilih LoRA",
choices=[
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
"XLabs-AI/flux-RealismLora",
"enhanceaiteam/Flux-uncensored"
],
value="XLabs-AI/flux-RealismLora"
)
process_lora = gr.Checkbox(label="🎨 Aktifkan LoRA")
process_upscale = gr.Checkbox(label="🔍 Aktifkan Peningkatan Resolusi")
upscale_factor = gr.Radio(label="🔍 Faktor Peningkatan Resolusi", choices=[2, 4, 8], value=2)
# Column 2: Advanced options (always open)
with gr.Column(scale=1, elem_id="col-right"):
with gr.Accordion(label="⚙️ Opsi Lanjutan", open=True):
width = gr.Slider(label="Lebar", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Tinggi", minimum=512, maximum=1280, step=8, value=768)
scales = gr.Slider(label="Skala", minimum=1, maximum=20, step=1, value=8)
steps = gr.Slider(label="Langkah", minimum=1, maximum=100, step=1, value=8)
seed = gr.Number(label="Seed", value=-1)
# Button to generate image
btn = gr.Button("🚀 Buat Gambar", elem_id="generate-btn")
# Running the `gen` function when "Generate" button is pressed
btn.click(fn=gen, inputs=[
prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora
], outputs=output_res)
# Launching the Gradio app
WallpaperFluxMaker.queue(api_open=False).launch(show_api=False) |