Spaces:
Running
Running
import os | |
from dataclasses import dataclass | |
import torch | |
from einops import rearrange | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file as load_sft | |
from flux.model import Flux, FluxParams | |
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams | |
from flux.modules.conditioner import HFEmbedder | |
class ModelSpec: | |
params: FluxParams | |
ae_params: AutoEncoderParams | |
ckpt_path: str | |
ae_path: str | |
repo_id: str | |
repo_flow: str | |
repo_ae: str | |
configs = { | |
"flux-dev": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
repo_flow="flux1-dev.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path='models/flux1-dev.safetensors', | |
params=FluxParams( | |
in_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path='models/ae.safetensors', | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"flux-schnell": ModelSpec( | |
repo_id="black-forest-labs/FLUX.1-schnell", | |
repo_flow="flux1-schnell.safetensors", | |
repo_ae="ae.safetensors", | |
ckpt_path=os.getenv("FLUX_SCHNELL"), | |
params=FluxParams( | |
in_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=False, | |
), | |
ae_path=os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
} | |
def print_load_warning(missing: list[str], unexpected: list[str]) -> None: | |
if len(missing) > 0 and len(unexpected) > 0: | |
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) | |
print("\n" + "-" * 79 + "\n") | |
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) | |
elif len(missing) > 0: | |
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing)) | |
elif len(unexpected) > 0: | |
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected)) | |
def load_flow_model(name: str, device: str = "cuda", hf_download: bool = True): | |
# Loading Flux | |
print("Init model") | |
ckpt_path = configs[name].ckpt_path | |
if ( | |
not os.path.exists(ckpt_path) | |
and configs[name].repo_id is not None | |
and configs[name].repo_flow is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow, local_dir='models') | |
with torch.device(device): | |
model = Flux(configs[name].params).to(torch.bfloat16) | |
if ckpt_path is not None: | |
print("Loading checkpoint") | |
# load_sft doesn't support torch.device | |
sd = load_sft(ckpt_path, device=str(device)) | |
missing, unexpected = model.load_state_dict(sd, strict=False) | |
print_load_warning(missing, unexpected) | |
return model | |
def load_t5(device: str = "cuda", max_length: int = 512) -> HFEmbedder: | |
# max length 64, 128, 256 and 512 should work (if your sequence is short enough) | |
return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device) | |
def load_clip(device: str = "cuda") -> HFEmbedder: | |
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device) | |
def load_ae(name: str, device: str = "cuda", hf_download: bool = True) -> AutoEncoder: | |
ckpt_path = configs[name].ae_path | |
if ( | |
not os.path.exists(ckpt_path) | |
and configs[name].repo_id is not None | |
and configs[name].repo_ae is not None | |
and hf_download | |
): | |
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae, local_dir='models') | |
# Loading the autoencoder | |
print("Init AE") | |
with torch.device(device): | |
ae = AutoEncoder(configs[name].ae_params) | |
if ckpt_path is not None: | |
sd = load_sft(ckpt_path, device=str(device)) | |
missing, unexpected = ae.load_state_dict(sd, strict=False) | |
print_load_warning(missing, unexpected) | |
return ae | |